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Chapter 1

Introduction

Missions involving multiple autonomous agents require planning and control on many

levels. Mission planners of varying complexity have been developed to take in high

level mission objectives and measurement data from the agents to decide on actions

for each of the agents in the network [1-4]. Typically, mission planners have many

layers, each dedicated to an aspect of the decision making process. This thesis inves-

tigates two of the planning problems associated with autonomous agents cooperating

in complex missions: 1) the task planning problem with coupled constraints, and 2)

the autonomous search problem in a partially unknown environment.

The Task Planning Problem with Coupled Constraints To simplify the plan-

ning problem, missions are often broken down into tasks, where each task represents

some aspect of the mission that needs to be performed [5]. Task planning decisions

are made regarding which agent should carry out which task, and when each task

should be performed. Decisions are made such that the mission is accomplished with

the lowest cost, or equivalently the largest reward.

In simple mission scenarios, each task may be assigned independently, as long as

two agents are not assigned to the same task. However, in a complex mission setting,

coupling exists between certain tasks in the task set. The importance of a task may

depend on whether or not another task is assigned, and the value a task adds to a

mission may be a function of when it is performed in relation to other tasks. This



thesis investigates the task planning problem with coupled constraints.

The Autonomous Search Problem in a Partially Unknown Environment

Mission objectives often include locating objects of interest in the environment. The

object's initial positions are typically unknown, but there may exist an a priori prob-

ability distribution that is known. The objects may be mobile, and so the possible

trajectories of the objects must be considered. The autonomous agents in a search

problem are equipped with some type of sensor with a finite field of view, and some

limited range. An object may be observed if it is contained within the sensor field

of view. The first time an object is observed, it is said to be found. The goal of the

autonomous fleet is to find as many objects as possible, and each object should be

found as soon as possible.

1.1 Previous Work-

Complex missions involving a fleet of autonomous agents pose a difficult planning

problem. The architecture of the mission planner used in such a scenario may be ei-

ther centralized, or decentralized. In a purely centralized planning architecture [6-9],

all decisions are made by a single computation source, and each agent in the network

receives its plan from this centralized node. In a decentralized architecture, multiple

nodes in the planning network contribute to the decision-making process. Each ar-

chitecture posses both advantages and disadvantages, and many modern systems are

not purely one or the other, but use elements of each.

One advantage of a centralized architecture is that all computation can be per-

formed from a ground control station, enabling lighter and less expensive vehicles.

Furthermore, techniques have been developed to specify a general set of constraints,

allowing very complex mission scenario. However, this type of architecture requires

a global information set, which may be difficult or impossible to obtain in real time.

As a result, centralized architectures often rely on a high bandwidth communication

infrastructure.



Ideally, the communication link between all elements of the system (command

station, autonomous vehicles, manned vehicles, etc.) is high bandwidth, low latency,

low cost, and highly reliable. However, even the most modern communication infras-

tructures do not posses all of these characteristics. If the inter-agent communication

mechanism has a more favorable combination of these characteristics compared to

agent-to-base communication, then a decentralized planning architecture offers per-

formance and robustness advantages. In particular, response times to changes in

situational awareness can be significantly faster via decentralized control than those

achieved under a purely centralized planner. In addition, decentralized planning

schemes are well-suited for situations where the information needed for decision mak-

ing is local with respect to the network diameter. This is particularly noticeable in

the task assignment consensus problem where agents near each other will require the

most communication to resolve task assignment conflicts, whereas agents that are

spatially separated are less likely to choose the same tasks. Decentralized algorithms

with strong inter-agent communication should support this scenario more efficiently

than centralized approaches. Therefore, the focus of this thesis is on decentralized

methods for planning in complex missions. However, this work also attempts build

an architecture that possesses advantages commonly found in centralized methods,

most importantly, the ability to handle coupled constraints.

1.1.1 Previous Work in Task Planning

Centralized Techniques for Satisfying General Coupled Constraints The

work described in [10] provides a framework to solve the task assignment problem

while enforcing timing constraints. The task assignment problem can be formulated

as a Mixed Integer Linear Program (MILP) and solved exactly by a commercially

available numerical solver. Alternatively, a suboptimal solution can be found using

Tabu search. The contributions in [11] provide a method for encoding detailed mission

specific constraints into a MILP, using the language of Linear Temporal Logic (LTL).

This work enables the user to rapidly, and intuitively encode the correct temporal

and dependency constraints.



In [12], three types of timing constraints are considered: simultaneous arrival

where agents must begin a task at the same time, tight sequencing where the difference

in arrival times between agents is specified exactly, and loose sequencing where the

difference in arrival times between agents is constrained to fall within a specified

range. The solution technique focuses on the cooperative path planning problem in

the context of multiple UAV task planning and scheduling.

These centralized methods are very power because of the constraint specification

generality. The characteristics of these methods are desirable for the planning systems

for complex missions, but since the techniques are centralized, they may be unsuitable

for certain communication infrastructures.

Decentralized Techniques and Market Based Methods One approach to de-

centralized planning is to instantiate multiple instances of the same planner on each

autonomous agent [13]. Each agent plans for the entire fleet, and executes only the

plan it generated for itself. If all agents begin with the same information set, or Sit-

uational Awareness (SA), then they will generate identical plans, and this is referred

to as implicit coordination. However, in real-world applications, the SA may not be

completely consistent across the fleet. Consensus protocols can be used to share in-

formation such that the agent network approaches a consistent SA [14-21]. However,

in a dynamic environment, consensus schemes can be slow to converge, introducing

latency, or never converge at all. The work in [22] attempts to add robustness to the

task assignment process via implicit coordination by communicating plan information

as well as parameter information.

Other methods for solving the task assignment problem are market-based ap-

proaches [23, 24], which are tractable for real-time applications. Many successful

market-based approaches use an auction mechanism [25, 26]. Auctions may be run

via an auctioneer [27-29], where each agent computes the reward associated with a

task based on their own SA, and uses that as their bid. Each agent communicates their

bid to the auctioneer, and the auctioneer determines the winner for each task. These

types of methods guarantee conflict free solutions since the auctioneer only selects



one agent as the winner. They are decentralized in the sense that the computation is

distributed, but they do rely on a centralized auctioneer.

Some auction-based protocols do not need to designate a single agent as the auc-

tioneer, but utilize a different protocol where the winner is decided based on a set

of self-consistent rules [30]. One such method is the Consensus-Based Bundle Al-

gorithm (CBBA) [31, 32], which is a polynomial-time, market-based approach that

uses consensus to reach agreement on the plan as opposed to the mission parameters.

Several extensions to CBBA has been made recently including predictive planning

[33] where the task duration in uncertain, time windows [34] where each task is time-

sensitive, asynchronous communication [35] which enables realistic decentralized im-

plementation, and cooperative assignment [36] which enforces some limited coupling

relationships in the task set.

Techniques for Enforcing Priority Levels The task planning problem with pri-

ority has drawn some attention in the cooperative control community [37-40]. The

mission scenario involves groups of tasks which posses a distinct priority. The con-

straints specify that lower priority tasks must not be assigned unless their correspond-

ing higher priority task is executed first. This type of framework is commonly applied

to the cooperative search, track, and engage mission. Each target in the environment

must be first tracked to confirm they are hostile, then engaged, and finally observed

to provide a battle damage assessment (BDA). These tasks must be executed in this

order, and cannot be assigned if the preceding task is not assigned.

Solutions to the single assignment problem with priority constraints are given in

[37, 38]. The single assignment problem is characterized by each agent planning at

most one task in advanced, whereas in the multiple assignment problem, a list of tasks

is planned for each agent. Multiple assignment is a more complex planning problem

than single assignment, but offers a significant performance increase [32]. The primary

objective in this thesis is to develop a solution strategy for the multiple-assignment

task planning problem with coupled constraints.



1.1.2 Previous Work in Search

One standard approach to the UAV search problem is to discretize the world into cells,

and utilize a cognitive map to guide the search [38, 41-43]. The cognitive map contains

information pertaining to the value of observing each cell. Quantities represented in

the map can include the probability that a target is present in a cell at a given time

step, the current level of uncertainty in each cell, or the time-since-last-visit for each

cell. Path planning decisions are made based on the cognitive maps, and often a

coordination strategy is employed to increase efficiency of the search. Several authors

have demonstrated the benefits of coordinating the search effort to avoid redundant

efforts.

Cognitive maps may be implemented according to various architectures. Maps can

be centralized [38] and continuously accessed by agents in the network. Conversely,

they may be distributed, where each agent carries their own version of the map,

which reflects what that agent believes about the world. The advantage of a shared

centralized map is that all agents have the same information set. Since situational

awareness pertaining to information in the world is consistent across the fleet, implicit

coordination is possible: Agents can infer the plan for the fleet as a whole, and

execute their respective portion of that plan. The disadvantage is that large amounts

of communication are required to update and access the central map. An alternative,

is the distributed map approach where each agent carries their own version of the

map. Since communication is prone to drop outs and latency, these maps likely differ

in a quantitative sense, but contain similar qualitative information. Inconsistent

situational awareness is inherent in the distributed map approach, so coordination

must be planned explicitly.

Ideally, the planning system generates trajectories that maximize the collective

information gained over the course of the mission, and minimize the expected time

until each of the targets are found. However, constructing full trajectories that span

the entire mission is often intractable for real-world applications. Therefore, the

planner only generates trajectories over a small planning horizon, which can be done



in real-time.

The practice of optimizing over a short planning horizon is a tractable method

for searching an environment. However, this strategy alone is prone to local minima

because of its inherent near-sightedness. For instance, the area around the refuel

base may be heavily traveled if all agents refuel from the same base. The uncertainty

around the base will then be very low for most of the mission. An agent that has

recently refueled, will plan a locally optimal trajectory, but that trajectory may not

lead the agent into the most interesting portions of the map. The best place to

search (an area yet to be explored, for example) may be beyond the agent's planning

horizon, thus ignored. To overcome these issues the second objective of this thesis is

to develop a method for effectively extending the planning horizon of an autonomous

team searching for targets in an environment.

1.2 Summary of Contributions

This thesis presents a decentralized method for solving the task assignment problem

with coupled constraints. The method builds on an existing task assignment algo-

rithm called the Consensus Based Bundle Algorithm (CBBA). The new framework is

able to handle both assignment constraints, which specify which combinations of tasks

are permissible, and temporal constraints, which specify the permissible relationships

between the start times for certain tasks. The performance of the new method is com-

pared to the baseline algorithm in a numerical simulation and the results indicate the

the new method achieves a performance increase of up to a factor of three.

This thesis also presents a decentralized method for autonomous searching. The

search algorithm presented builds off of an existing algorithm and effectively extends

its planning horizon. Mission simulations confirm that the search algorithm presented

out performs the original algorithm in maximizing the number of targets found, and

minimizing the amount of time required to find each target.



1.3 Thesis Overview

The remainder of this thesis is organized as follows: Chapter 2 provides a description

of the baseline task assignment algorithm. It first explains the information struc-

tures specific to the method, then describes the task assignment process. Chapter

3 describes an extension to the baseline task assignment algorithm which is capa-

ble of handling coupled constraints. Chapter 3.10 presents numerical results for the

algorithmic extension described in Chapter 3. Chapter 4 discusses an algorithmic

extension for handling refuel constraints in the task assignment process. Numerical

results for the extension are also presented in this chapter. Chapter 5 introduces

several strategies for solving the autonomous search problem, including a newly de-

veloped algorithm. The strategies are compared in several mission scenarios, and the

results are presented with commentary in this chapter as well.



Chapter 2

Background on Baseline Task

Planning Algorithm

The Consensus-Based Bundle Algorithm (CBBA) is a decentralized, polynomial-time,

market-based task planning protocol. CBBA consists of two phases which alternate

until the assignment converges. In the first phase: task selection, each agent sequen-

tially adds tasks to its plan, attempting to maximize the total score for its plan. In

the second phase: conflict resolution, plan information is exchanged between neigh-

bors, and tasks go to the highest bidder. CBBA is guaranteed to reach a conflict free

assignment.

2.1 Information Structures

During the task assignment process, each agent i stores several information structures

that are described below:

Bundle: The bundle, b A {bj,. .. , bisl)}, whose elements are bic E j for n =

1, ., 1b, contains the indices of the tasks agent i is currently winning. The length

of the bundle, denoted 1b, is restricted to be no longer than some maximum Lt.

Therefore, the parameter Lt sets the planning horizon for the system. The bundle

is ordered chronologically with respect to when the tasks were chosen: task bin was



chosen before task bi(,+1). If agent i is not currently winning any tasks, b= 0, and

lb = 0.

Path: The path, pi A {pi,... ,Pitib)}, whose elements are pin J for n = 1, ., 1b,

also contains the set of tasks agent i is currently winning. However, the path is

ordered according to when agent i plans to carry out each task: pin is scheduled to

begin before pi(n+1). The path is the same length as the bundle, and thus is also not

permitted to be longer than Lt.

Times: The vector of times, -r {Ta,--- , T7(l)}, whose elements are Tin C R+ for

n= 1,...1, l, contains the set of planned arrival times corresponding to each of the

tasks in the path, pi. Since the path is sorted according to arrival times, the elements

in the time vector monotonically increase. The vector of times is the same length as

the path by definition.

Winning Agents: The winning agents list, zi {zi,... , ziNt }, whose elements

are zin E I U {0} for n = 1, ... , Nt, stores information pertaining to which agent is

currently winning each task. Specifically, the value in element zin is the index of the

agent who is currently winning task n according to agent i. If agent i believes that

there is no winner for task ni, zin = 0.

Winning Bids: The winning bids list, yj A {yi, ... , yiNt }, whose elements are

yin E R+ for n = 1, . . . , Nt, contains the highest current bid for each task in the task

set. If agent i believes that there is no winner for task n, yin = 0.

Time Stamps: The time stamp list, si = {sii, ... , SiN}, whose elements are sin C

R+ for n = 1, ... , Na, indicates the amount of time elapsed since agent i received an

information update from each of the other agents in the network. The time stamp

list is used to keep track of the age of a given piece of information for tie-breaking

purposes. New information is trusted over old information.



2.2 Phase I: Task Selection

In the first phase of CBBA, task selection, each agent iteratively adds tasks to its

bundle. The selection process is sequentially greedy; given an initial bundle, bi, agent

i adds the task that will result in the largest marginal increase in score, and repeats

the process until the bundle is full, or no more tasks can be added. Each time agent i

adds a task j to its bundle, it enters its own index into the winning agent list, zij <- i,

and its corresponding bid into the winning bids list, yij <- S (i, tij). Agent i is only

allowed to add task j to its bundle if agent i can place a higher bid than the current

highest bidder, yij.

Agent i computes the marginal scores for each task as

0 if j1 E pi~21
cij (pi) = fjCP (2.1)

maxfglb Spath(Pi n j) - Spath(Pi) otherwise

where ci(pi) is the marginal score for agent i performing task j, Spth(Pi) is the score

for agent i performing the tasks in the path pi, and @n denotes the operation that

inserts the second list right after the nth element of the first list.

The task selection process for agent i is given by Algorithm 1, where its inputs

are the initial bundle bi, path pi, and the most recent list of winning bids available

yi.

Notice that the calculation of the arrival times are not explicitly described in

Algorithm 1. Instead, the arrival times are uniquely defined by the path, pi.

ri = arg maxr l ER ' 1 Spi, (z, Tin) (2'2)
-R n-i

subject to: Tur + A(aloci, tlocp,,) < Tn for n = 1

Ti(n-1) + d_(n 1) + A(tloc, , tlocin) < Tin for n = {2,...,lb}

where Si (-) is the score function for the task located in the nth position of the path

of agent i, dp,, is the duration of the task located at the nth place in agent i's path,

A(A, B) is the time required to travel from the location A to the location B, aloci is



Algorithm 1 Task Selection Process for Agent i, Original CBBA

1. Calculate marginal scores for all tasks

c..(P() - 0 if j E Pi
c maxlb Spath(pi on j) - Spath(Pi) otherwise

2. Determine which tasks are winnable

hij = I[(cij > yij) VjE

3. Select the index of the best eligible task, j*, and select best location in the plan
to insert the task, n

j* = arg max ci - hi
jEJ

n = arg maxSpath(pi oGj)
SnE{0,...,l4}

4. If ci7 < 0, then return. otherwise, continue to 5.

5. Update agent information
bi = b, j*1b .

Pi = Pi Dn; *

6. Update shared information vectors

Yi(j*) = cW

7. if lb = Lt, then return, otherwise, go to 1.

the current location of agent i, tloc is the location of task j, and Tcu is the current

time. The constraints ensure that an agent has sufficient time to complete each task

and travel from each task location to the next, provided that the durations are known,

and the travel times are deterministic.

The score for a given path, Spath(Pi) can be written similarly:

Spath(pi) = max 1 Sp1 (i, Ti) (2.3)

subject to: Tcur + A(aloci, tlocpn) < rn for n = 1



Ti(n-1) + d _ i( ] + A(tlocp(,,_ , tlocp,,) < Tin for n= {2,...,l}

The solution to (2.2) and (2.3) may be difficult to find if the score function for

each task is a general function of time, since it is an optimization over an entire set

of parameters. However, if the score function Sj is monotonically decreasing with

respect to time for all tasks, the optimal solution can be found easily in polynomial

time with respect to the length of the path. The procedure is to first select the time

for the task that appears first in the path as

rii = Tcur + A(aloci, tlocp21 ) (2.4)

Then, for each subsequent task, choose the time to be:

Tin = ri(n-1) + dp, (1) + A(tlocP _,1)' tloc,.) (2.5)

The rational, is that if the score function for each task is monotonically decreasing,

and the order in which tasks are to be executed is given, then the tasks should each

be executed as early as possible.

2.3 Phase II: Consensus

After all agents complete a round of the task selection phase, agents communicate

with each other to resolve conflicting assignments within the team. After receiving

information from neighboring agents about the winning agents and corresponding

winning bids, each agent can determine if it has been outbid for any task in its

bundle. Since the bundle building recursion (Section 2.2) depends at each iteration

upon the tasks in the bundle up to that point, if an agent is outbid for a task, it

must release it and all subsequent tasks from its bundle. If the subsequent tasks are

not released, then the current best scores computed for those tasks would be overly

conservative, possibly leading to a degradation in performance. It is better therefore

to release all tasks after the outbid task and redo the task selection process to add



these tasks (or possibly better ones) back into the bundle.

This consensus phase assumes that each pair of neighboring agents synchronously

share the following information vectors: the winning agent list zi, the winning bids list

yi, and the list of time stamps si representing the time stamps of the last information

updates received from all the other agents. The time stamp list for any agent i is

updated using the following equation,

Sik = Tr, 
if 1ik

max{smk | m E T gim = 1} otherwise,

which states that the time stamp Sik that agent i has about agent k is equal to the

message reception time Tr if there is a direct link between agents i and k (i.e. gi -- 1

in the network graph), and is otherwise determined by taking the latest time stamp

about agent k from the set of agent i's neighboring agents.

For each message that is passed between a sender k and a receiver i, a set of

actions is executed by agent i to update its information vectors using the received

information. These actions involve comparing its vectors zi, yi, and si to those of

agent k to determine which agent's information is the most up-to-date for each task.

There are three possible actions that agent i can take for each task j:

1. Update: zij = Zkj, yij = Yk 3

2. Reset: zij = 0, yij = 0

3. Leave: zij = zij, yij = yij.

The decision rules for this synchronous communication protocol were presented in [44]

and are provided for convenience in Table A.1 in Appendix A. The first two columns

of the table indicate the agent that each of the sender k and receiver i believes to be

the current winner for a given task; the third column indicates the action that the

receiver should take, where the default action is "Leave".

If either of the winning agents or winning bids lists (zi or yi) are changed as an

outcome of the communication, the agent must check if any of the updated or reset



tasks were in its bundle. If so, those tasks, along with all others added to the bundle

after them, are released. Thus if n is the location of the first outbid task in the bundle

(h = min{n | Zi(b,,) f i} with bis denoting the nth entry of the bundle), then for all

bundle locations n > h, with corresponding task indices bi, the following updates

are made:

Zi(bin) = 0 and Yi(bin) = 0 (2.7)

The bundle is then truncated to remove these tasks,

b <- {b , . .. , bi(nl)} (2.8)

and the corresponding entries are removed from the path and times vectors as well.

From here, the algorithm returns to the first phase where new tasks can be added to

the bundle. CBBA iterates between these two phases until the information lists, zi

and yj stop changing for all agents in the network.

2.4 Convergence and Performance Properties

2.4.1 Convergence

It has been previously shown that if the scoring function satisfies a certain condition,

called diminishing marginal gain (DMG), CBBA is guaranteed to produce a conflict-

free assignment and converge in at most max{N, LtNs}D iterations, where D is the

network diameter (always less than N,) [44]. The DMG property states that the

score for a task cannot increase as other elements are added to the set before it. In

other words,

cij (pi) ;> cij(pi onrm) (2.9)

for all pi, n, m, and j, where m / j and m, j V pi. The convergence proof is

given in [44] if more details are desired by the reader. The proof assumes that the

network is strongly connected (Each agent can communicate with all other agents



through some communication path), but not necessarily fully connected (Each agent

can communicate directly with all other agents).

2.4.2 Performance

CBBA is a suboptimal task assignment algorithm, but it posses a performance guar-

antee. Given a strongly connected network of agents, each with accurate situational

awareness, CBBA converges to an assignment with a score that is at least 50 per-

cent of the optimal assignment score [44]. The performance guarantee is empirically

shown to be very conservative; numerical results demonstrate that CBBA achieves

assignments that are typically 95 percent of optimal or better for randomly generated

test cases [44].

2.5 CBBA with Time Windows

The CBBA with Time Windows algorithm extension [34] is designed to provide task

assignments when each task is constrained to begin inside of a specific time window

of validity. To begin, some terminology is defined:

Score function: The score function from the original CBBA can be written S (aj, tj)

and it gives the score an agent receives from task j when it arrives at the task at time

tj. This score is typically composed of two parts: 1) the nominal reward for the task,

Rj(aj), which is a function of aj, the index of the agent assigned to task j, and 2) the

discount function, which is a function of the arrival time for task j, tj. For example,

for time discounted cases this quantity can be defined as Sj(aj, tj) - e- AtjR(a),

where A is a discount parameter that determines how quickly the score decays with

time.

Time Window: In a more general formulation, each task j is given a time window

of validity defined as [Tart, rjnd]. A task begun outside this window gains no reward,



so the score function may be augmented to include an additional term

(tj -Tjtart) [start Tend]

Sj (aj, tj) = e-" -r - Rj (aj) - R[(tj c [r , rE j)

where I(.) is the indicator function which returns 1 if the argument is true, and 0

otherwise. Alternatively, the time window can be treated as an additional constraint:

ri = arg max ± Spa (r (2.10)

subject to: Tur + A(aloci, tlocpn) < Tin for n = 1

Ti(n-1) + dP,(n_ + A(tloc , tlocin) < rcP for n = {2,. l}

ri - Pin for n = {1, ... , lb}

r< rend for n={1,...,l}

During the task selection phase of CBBA, a constraint is added such that adding a

task to agent i's path is not allowed to alter the starting times of each of the tasks

already in the path. With the this restriction, cij(pi) can be written

ciy (pi) = max Sj (i, t) (2.11)
tc7Tj'owed(po)

and the start time,

Tij (pi) = arg max Sj (i, t) (2.12)
teTaIlowed (p,)

where Tfllowed(p,) is the set of allowable start times for task j, conditioned on the

current path, pi, and is calculated

r eallowed (P)=[jtart Tnd] i2.pi i2.13

where Qin(pi, j) is the interval of time that is invalid as a start time for task j

because of the nth task in path pi, and \ is the set difference operator. Specifically,

task j is not allowed to begin inside Qin(pi, j), because it would be temporally too

close to rin, meaning that agent i would be either late to task pin, or late to task j.



Qin(pi, j) is given by

Qin(pi, j) = [Ti - dj - A (tloc±A, tloc,,), Ti, + d,, + A (tloc,,, tlocj)] (2.14)

To verify that the time-windows framework satisfies the DMG property it must

be shown that for all j ( pi, m ( pi, and nm E {,.. . , b}

Cij(pi) ;> Cij(Pi on. m) (2.15)

Notice that

T allowed(Pi em m) (Tallowed(pi i(nm)(pi @nm m,(j)) (2.16)

and so Talowed(p Gnm m) is necessarily a subset of Tllowedp) for all nm 1, .. , ib}-

Therefore, cij(pi enm rm) must be no greater than cij(pi), hence DMG is preserved.

Therefore, given a strongly connected network of agents, and a score function that

satisfies DMG, CBBA with Time Windows will converge to a conflict-free solution in

max{N, LtN,}D or fewer iterations, where D is the network diameter.

Solving (2.11) requires continuous optimization over a non-convex space, which

can be computationally expensive for large problems. However, the problem can be

decomposed into a set of smaller problems, where the task j is inserted into the path

pi after each position, nj, and the marginal score is taken to be the maximum over

the calculated values.

tij (nj I pi) = arg maxtij ER+ S ' i)(.7

subject to: Tcur + A(aloci, tlocj) < tij if nj = 0

Ti(n-) + dP() + A(tlocP,( n, tloc) < tij if nj > 0

tij + dj + A(tlocj, tlocPi(fl l)) < Tj±it41) if n < lb

Ti(nj) < tj yif nj > 0

tij < Titnj+1) if ni < lb



tjj ;> rjstart

ti < T7 end

If a constraint feasible solution to (2.17) cannot be found, then the nh location is not

a valid place to insert task j into pi. If no valid location can be found, the marginal

score for adding task j to pi is zero.

An efficient algorithm is provided next for calculating the marginal score, cij, the

visit time, Ti() and the optimal index n for a task j given agent i's path pi. The

algorithm assumes that the score function has some unique time r .t that results

in the maximum reward for visiting that task. Furthermore, the score is strictly

monotonically increasing for time less than T , and strictly monotonically decreasing

for time greater than .T.Z3

If the score structure for each task has these properties, then Algorithm 2 and

Algorithm 3 are used for the task selection phase, and the consensus process is un-

changed from the original CBBA. The algorithm as it is presented here is the baseline

algorithm from which the coupled-constraint extension is described.

Notice that Algorithm 2 and Algorithm 3 feature a feasibility vector, Fij. This

vector comprises Booleans for each location j in path pi. Each Boolean Fij(n) indi-

cates whether or not it is feasible to insert task j into the nth location of path pi.

The vector is initialized at the beginning of each task selection phase, and effectively

prunes the decision space as the task selection process continues. Once the algorithm

determines that an insertion location for task j is infeasible, that location does not

need to be checked again in this phase, so it is pruned from the list by setting its

Boolean to false.

2.6 Summary

In this chapter explains the baseline task assignment algorithm that is used in the

remainder of this thesis. CBBA comprises two phases. In this first phase, task selec-

tion, agents build a bundle by sequentially selecting tasks which result in the greatest



Algorithm 2 Task Selection Process for Agent i, CBBA w/ TW

1. Initialize Feasibility Vector

Fij(k) = true V k {,. .. , }

2. Determine which marginal scores are to be calculated, set all others to zero

Jicalc

cij = 0 Vj E Jj V jcalc

3. Calculate marginal scores for all tasks, j E Jicalc using Algorithm 3. Inputs: pi,
Si, and [Tria T nd] Outputs: cij, nij, tij for each task j

4. Determine which tasks are winnable

Vj E J

5. Select the index of the best eligible task, j*

= arg max cj -

6. If cij < 0, then return. otherwise, continue.

7. Update agent information
bi = b o1b j*

P; =Pi oIn ,j*

ri =7i GniL* ti3

8. Update shared information vectors

Yi(j) = cij*

zi(*) = z

9. Update the feasibility vector

F= Fzj en, true

10. if lb = Lt, then return, otherwise, go to 2.

hij = ]I(cij > yij)



Algorithm 3 Calculate marginal score of task j given pi for agent i

1. For All n E .0. . . , Ib} where Fij(n) = true

(a) Find Tearliest and rlatest such that agent i has sufficient time to carry out

the task before j and the task after j.

earliest max ((Ttt),I (Tr + A(aloci, tlocj)))

max (('tart), (Ti, + dp,, + A(tloci,,, tloc)))

Tlatest mend
mj ((Tend)(-(±) - dj- A(tlocj, tlocP~f~))

if n = 0
otherwise

if n = lb
otherwise

(b) Initialize score and time for n location to be zero, which are rewritten if

[Tearliest, Tlatest] is feasible.

s(n)=0 t(n)=0

(c) if (rearliest > yiatest) then

Fi (n) = false

else

i. if (Tearliest opt A Tlatest > t) theni. if(T <T , >T Pt the

s(n) = Sj(i,rT)

ii. if (Tearliest o T-pt A Tiatest < o~pt) then
Z3 - Z3

s(n) = Sj (, Tlatest)

iii. if (rearliest opt iatest ot) thenH~~~> if tT A T aet> TJ Pthe

t(n) = t

t(n) T Tlatest

t(n)= earliest

2. Record marginal score for task j, the location to insert it if it is chosen, and the

time to perform it if it is chosen.

cij = max s(n)
nC{O,...,b}

lij = arg max s(n)
nE{0...,b}

tij = t(nij)

s (n) = Sj ( earliest)



score increase for their bundle. In the second phase, consensus, agents communicate

with neighboring agents to resolve conflicts in the assignment. CBBA is guaranteed to

converge to a conflict-free assignment that is at least 50 percent of optimal under mild

assumptions. CBBA with Time Windows is also introduced in this chapter, which

enables the algorithm to produce assignments for time-sensitive tasks. CBBA with

Time Windows is shown to satisfy sufficient conditions to guarantee convergence.



Chapter 3

CBBA with Coupled Constraints

This chapter presents an algorithmic extension to CBBA which enables handling of

coupled constraints in the task set. CBBA with Time Windows, as presented in

Section 2.5, is the baseline algorithm from which this algorithm is developed. The

new framework is named the Coupled-Constraint Consensus Based Bundle Algorithm

(CCBBA).

3.1 Task Allocation with Constraints

Consider a bounded environment containing a network of, N, autonomous agents,

and a set of Nt tasks. For notational convenience, both agents and tasks are given

integer indices. The set of all agent indices is denoted I {1, ... , N,}, while the set

of all task indices is denoted J A {1, ... , N}.

Each task, j E J, is given a score function, Sj(aj, tj) E R+ which represents the

value that task adds to the mission as a function of aj c {l U 0}, the index of the

agent assigned to task j, and tj E {R>o U 0} the time the agent plans to arrive at the

jth task location. The symbol 0 denotes a null entry in the corresponding set. The

goal of the task planner is to assign agents to tasks in such a way that the cumulative

score over all tasks in the task set is maximized. The task assignment problem at a



given mission time has an objective function expressed as

Nt

max S Sj (aj, tj) (3.1)
j=1

Note that in this formulation, there exists no requirement to assign an agent to

every task, and in fact doing so may be infeasible. However, a task only earns a

positive score if an agent is assigned to it, Sj(aj, tj) > 0 only if a3 -# 0 . Therefore,

the task planner must determine an appropriate subset of tasks to assign, and select

the agent, and visit time for each assigned task. The assignment is thus completely

determined by selecting a3 and tj for each task j (- J.

The problem is subject to two types of constraints: 1) non-coupled constraints,

and 2) coupled constraints. The defining characteristic of a non-coupled constraint

is that it affects the options available to a given agent i independently of decisions

made with respect to all other agents. Non-coupled constraints include:

1. Capability constraints: Each task has a requirement, and each agent has a

set of capabilities. Compatibility matrix, M captures each agent's fitness for

performing the task. If entry M(i, j) > 0 agent i is allowed to perform task j.
If entry M(i, j) = 0 agent i is not allowed to perform task j.

2. Time window of validity: Each task j, has a time window of validity given by

[Tit, rjnd]. The task must be started on the interval of time specified by the

time window. If a task is not time sensitive, it is given a time window of [0, oc].

3. Vehicle dynamics: Each agent has a set of dynamics that impose a set of con-

straints on that agent. Agent i has a maximum speed, vnax, a maximum ac-

celeration, ijax, and a minimum turn radius rnif". These parameters determine

the minimum amount of time required between each task the agent performs.

4. Fuel constraints: At a given time t, agent i has remaining fuel mass, mi

and has nominal fuel consumption rate, Tufuei. These parameters determine the

maximum remaining time aloft for agent i.



Coupled constraints include any situation where the decisions regarding one agent

alter the options available to another agent. Often, in a complex mission, there are

a variety of such constraints due to rules of engagement or simply the nature of the

tasks involved. Coupled constraints include:

" Assignment constraints: Assignment constraints deal with the relationship be-

tween tasks with respect to which combination of assignments are permitted.

Examples:

1. Conflict-freeness: Each task may have at most one agent assigned to it.

(Note that this is a simplifying assumption: mission activities requiring or

benefiting from multiple agents may be represented by multiple instances

of the same task.)

2. Unilateral Dependency: A task, A is dependent on another task B, but

task B is not dependent on A. In other words, task A cannot be assigned

unless B is also assigned, but B may be assigned independently of task A.

3. Mutual Dependency: A task A is dependent on another task B, and task

B is dependent on task A. Task A and task B must be assigned together

or not at all.

4. Mutually Exclusive: A task A cannot be assigned if another task B is

assigned, and task B cannot be assigned if task A is assigned.

" Temporal constraints- Temporal constraints include any specified relationship

between the chosen visit times within a subset of tasks. Common temporal

constraints include, but are not limited to:

1. Simultaneous: task A and B must begin at the same time.

2. Before: task A must end before task B begins.

3. After: task A must begin after task B ends.

4. During: task A must begin while task B is in progress.



5. Not during: task A must either end before task B begins, or begin after

task B ends.

6. Between: task A must begin after task B ends and end before task C

begins.

The baseline CBBA is capable of handling non-coupled constraints including ca-

pability constraints, time windows, and basic vehicle dynamics such as top speed.

Note that minimum turning radius is not explicitly accounted for in this framework.

However, if the minimum distance between tasks is much larger then the greatest min-

imum turning radius of the agents, then Euclidean distance is a good approximation

for path length between tasks. That assumption is made here.

The baseline algorithm is also capable of guaranteeing conflict-free assignments,

assuming a strongly connected network, which is one type of coupled constraint.

However, it is not able to account for the other types of coupling which are common

in complex missions. This chapter describes the necessary machinery for enforcing

the following types of coupled constraints within the CBBA framework: 1) unilateral

dependency constraints, 2) mutual dependency constraints, 3) mutual exclusions, and

4) temporal constraints.

The procedure for enforcing these coupled constraints is split between the task

selection phase of CBBA, and the conflict resolution phase. The additional protocols

for handling coupled constraints which are specific to the task selection phase are

described in Sections 3.3, 3.4, 3.5, and 3.6. The additional protocols which are specific

to the conflict resolution phase are described in Section 3.7.

3.2 Task Set Partitioning

For book-keeping purposes, the task set is partitioned into sub-groups of tasks that

share coupled constraints. Each of these sub-groups is called an activity. For no-

tational convenience, each task in an activity is referred to as an element of that

activity, and is given an index, q E Z+. Each task in the task set can be uniquely



identified by its activity number and element index, and the notation jq is used to

indicate the task associated with the qth element of activity j. The set of all tasks

in the task set is still denoted J. The set of all activities in the set is denoted A,

while the set of all elements in an activity j is denoted A3 . Each pair of elements in

an activity may a coupled constraint between them but does not have to. However,

by construction, coupled constraints do not exist between tasks belonging to different

activities with the exception of the conflict-freeness constraint.

An example is shown in Figure 3-1. In this example, task B may not be assigned

unless task A is assigned, but task A may be assigned independently of task B.

Task C may not be assigned unless task D is assigned, and task D may not be

assigned unless task C is assigned. The task pair (C, E) may not both be assigned,

and the task pair (D, E) may not both be assigned. This particular task set can be

grouped into two activities, with two and three elements respectively. The task set

S {A, B, C, D, E} is now written J = {11, 12, 21, 22, 23}

Activity 1

Activity 2

C D q=1 q=2

E q=3

Dependency
-X- Mutual Exclusion

Figure 3-1: Example of task set partitioning

For each activity j E A, the constraint structure can be compactly written in the

form of a Dependency Matrix, DP where the row column entry, (q, u), describes the

relationship between the qth element of activity j and the uth element of activity j.

The notation for encoding the constraints is provided in Table 3.1. Note: the diagonal

entries of DP are defined to be 0 for all activities.

In the example shown in Figure 3-1, activity 1 has two elements: task 11 which has



Table 3.1: Code for Dependency Matrix Entry Dj(q, u)

1 element u depends on element q
0 element u may be assigned independently of ele-

ment q
-1 element q and u are mutually exclusive
a E {2, 3,... } element u requires either element q or another el-

ement with the same code, a. Entries are used
sequentially: 3 is not used unless 2 is used, etc.

no dependency constraints, and task 12 which depends on task 11. The relationship

is referred to as a unilateral dependency constraint, and it is represented in the

dependency matrix as D1 (1, 2) = 1, and D1 (2, 1) = 0. Activity 2 has three elements:

task 21 and task 22 are mutually dependent on one another, while task 23 is mutually

exclusive with both tasks 21 and 22. The dependency matrices from the example in

Figure 3-1 are given by:

0 1 -1D [ , D2 1 0 -1
0 0

-1 -1 0

Each task in the task set is given a bidding strategy which represents how the bidding

protocol is handled. Consider a task Jq which is the qth element of activity j. The

positive entries of the qth column in Dj indicate which elements of activity j task jq
depends on. If all tasks which task jq depends on do not also depend on task jq, then

task jq is given a pessimistic bidding strategy, meaning that an agent is not permitted

to bid on task jq unless all dependencies of task jq are filled. Details of the pessimistic

bidding strategy are described in Section 3.3.

Returning to the example, D1 reveals that task 12 depends only on task 11, and

task 11 does not depend on 12 because D1 (2, 1) = 0. Therefore, task 12 would be

given a pessimistic bidding strategy, and an agent wishing to add task 12 to its

bundle would not be permitted to do so unless it had confirmation of another agent

currently winning task 11.



Now consider an agent that is able to benefit by adding task 21 to its bundle. Task

21 is mutually dependent on task 22, but if all agents wait to bid on these tasks until

the other task has a winner, then neither task will ever be assigned. The paradox

is that neither agent has incentive to bid without confirmation from a "partnering"

agent.

Therefore, an optimistic bidding strategy is developed for tasks which are mutually

dependent on another task. The optimistic bidding strategy does not require agents

to wait until all dependencies of a task are filled before bidding on it. Details of the

protocol are described in Section 3.4.

The bidding strategy for each task Jq E J is determined from the dependency

matrix for the activity to which the task belongs according to

bidStratjq { optimistic if 3 u s.t. Dj (u, q) > 1 A Dj (q, u) =1 (3.2)
pessimistic otherwise

3.3 Pessimistic Bidding Strategy

Task jq is given a pessimistic bidding strategy if it is only dependent upon tasks

which do not depend on jq. CBBA is modified in the task selection phase such that

an agent is only allowed to bid on the qth element of task j if all dependencies for iq

have a current winner.

In the baseline CBBA, at the beginning of the task selection phase, an agent i

calculates the marginal score for each of the tasks in the task set that are not in their

bundle. In Coupled-Constraint CBBA, a step is added before this where an agent

determines which tasks it is allowed to bid on. This is accomplished by comparing

the number of satisfied constraints with the total number of constraints for each task.

The total number of constraints that is required to be satisfied for a task jq is given

by
1kj I

Nreq(jq) = EH (D (u, q) = 1) + max (0, max (Dj (u, q)) - 1) (3.3)
u=1 u,={1.-}IA

which counts the number of dependencies associated with jq by examining the qth



column of Dj. Every entry equal to 1 in the qth column of Dj counts as one constraint

that needs satisfied, but for every entry larger than 1, only the first instance with

that value is counted.

Example: The first column of D is given by {0, 1, 2,2, 3,1,3, 3}T. This indicates

that task Ji may only be bid on if the following task combination has current winners:

j2 and J6 and (j3 or j4) and (j5 or j7 or js). The total number of constraints that

must be satisfied is 4 in this case as calculated by Equation (3.3).

The number of satisfied constraints is a function of an agent's current knowledge.

Agent i calculating the number of satisfied constraints for task jq uses Equation (3.4),

which is conditioned on zi and given by

nsat (jqlzi) = I ((zi(j.) 0 0) A (Dj(u, q) = 1))+

(EIA I ( (zi (j,) 4 0) A (Dj (u, q) = 2)) ;> 1I +(34

i ((4zit,) #h 0) A (Dj (u, q) = 3)) > I) + (3.4)

The pessimistic bidding strategy specifies that agent i is allowed to bid on task jq only

if all of the dependency constraints for task jq are satisfied. The Boolean canBidi(jq)

is used to keep track of this permission and is given by

canBidif(j) = true if nsat (jqzi) = Nreq(jq) (3.5)
false otherwise

If canBidi(jq) is true, then the marginal score for jA is calculated to determine if this

task should be added to agent i's bundle. If canBidi(jq) is false, then the marginal

score for jq is set to 0.

3.4 Optimistic Bidding Strategy

Tasks which are mutually dependent on at least one other task are given an optimistic

bidding strategy which is a technique adapted from the Decentralized Task Elimina-

tion algorithm described in [361. This section describes the bidding process for such



tasks.

Consider a task jq with an optimistic bidding strategy. An agent who can benefit

from adding task jq to its bundle may do so, even if the number of satisfied constraints

is smaller than the number required. The agent then keeps track of the number of

iterations that pass where at least one of the tasks which jq depends on remains

unassigned. If too many iterations pass, the agent releases task jq from its bundle.

The task is released with the assumption that the other agents in the network are

not interested in selecting the tasks jq depends on, because other tasks are more

valuable to these agents. To prevent an agent from repeatedly bidding on a task only

to release it once it discovers no other agents are interested in performing the tasks

which it depends on, the number of attempts is limited. Once an agent has run out

of attempts on a particular task, they are no longer permitted to bid on that task

unless all of the required constraints are satisfied. Thus the agent has transitioned to

a pessimistic bidding strategy for this task. To formalize the technique, the following

definitions are introduced:

Number of Iterations in Constraint Violation: vi A {v, . . ., liNt} is the list

which keeps track of the number of CBBA iterations which have passed with agent

i violating a constraint. Element notation vi(jq) is used to indicate the number of

iterations agent i has been winning element q of activity j while at least one other

element in j is unassigned.

Permission to Bid Solo: W1 {w , ... , w } indicates which elements agent

i is allowed to bid on as the first agent. The list is initialized to contain positive

integers representing the number of attempts an agent is given to win the particular

element. If wsolo > 0, agent i is permitted to bid on task jq even if no other elements

of j have a winning agent. If a task jq is released due to a timeout, or a timing

constraint violation, w is decremented by one.
i(jq)sdere

Permission to Bid Any: w" { . , WinI indicates which tasks agent i is

allowed to bid on given that at least one of the dependency constraints is satisfied for



that task. The array is initialized to contain positive integers in a similar manner to

w , except the initial values are typically larger in magnitude. If Wjq) > 0, and any

other element of j has a winner, agent i is permitted to bid on task jq. If an element

jq is released due to a timeout, or a timing constraint violation, w") is decremented

by one.

In addition to the information arrays, for each element q of an activity j, a timeout

parameter, ojq is defined. At each iteration, agent i increments vi(jq) for each task,

jq, for which agent i is the winner, but the other elements belonging to activity j are

not filled. If at any time, vi(jq) exceeds ogq, the task jq must be released from bi, and

the values wsolo and mWa, are each decremented by 1.
i(jq) i(.jq)'

An agent i is allowed to bid on task jq if the following Boolean is true:

true if (wan > 0 A nsat (jq z1) > 0) V

canBidi(jq) (w o > 0) V (nsat (jqlzi) =Neq(jq)) (3.6)

false otherwise

Thus if w > 0, then the agent has not yet exhausted its attempts to acquire

the proper number of partnering agents for task jq, and so it is allowed to bid even if

0 dependency constraints are satisfied. If wsol = 0, but wany > 0, then the agent has
i(jq) i(jq)

not yet exhausted its attempts to acquire the proper number of partnering agents,

but at least one dependency constraint must be met in order for the agent to bid on

task jq. If both w~lo = 0 and Wany = 0, then agent i has exhausted its attempts to
i~jq)i(jq)

bid optimistically on task jq, and may only bid if all of the dependency constraints

for task jq are satisfied.

Selection of ojq The parameter, ojq sets the timeout length for task jq. An agent

is allowed to keep task jq in its bundle for at most OJq iterations while the number of

satisfied constraints is less than the number required. The choice of ojq should ideally

be a function of the expected network topology at the time task jq is instantiated.

Consider an activity j with two mutually dependent elements, q and u. Suppose



agent i bids on task jq and agent k bids on task j,. If o0 q is chosen too small,

then agent i may release task jq even though agent k bids on task ju, because the

information regarding agent k's bid took more than ojq iterations to reach agent i.

Thus selecting ojq too small may lead to performance degradation.

Now consider the case where no agent is available to bid on task ju. If ojq is

chosen too large, then agent i waits for an unnecessarily large number of iterations

before releasing task jq. Thus selecting large timeout parameters may lead to longer

convergence times.

Initialization of wsol and w?"Y The initial values in w0lO and wa"' are chosen

as mission parameters. Selecting a higher initial value for W(1 gives agent i more

attempts to bid on task jq, however may adversely affect the runtime of the algorithm.

Selecting too small of a value may reduce performance.

Example: Suppose w01 and W are both initialized to 1. Then agent i has one

attempt to bid optimistically on task jq. If agent i is ever forced to release task jq

due a timeout or because of a temporal constraint violation, then wslO and w"'j arei(jq) jq

each decremented by 1, making them both 0. At this point in time agent i can no

longer bid optimistically on task jq; it has to wait until all dependency constraints

are satisfied before rebidding. Agent i is forced to bid pessimistically on task jq once

WS01q and wanY are both 0. If an agent is forced to bid pessimistically too soon, the

assignment may not reach its full potential.

3.5 Mutual Exclusions

In the baseline CBBA, an agent must be able to outbid the current winner of a task in

order to be eligible to bid on that task. In Coupled-Constraint CBBA, to bid on task

jq, the marginal score for jq must be greater than all of the tasks which are mutexed

with task jq. Therefore, task jA is eligible to be bid on by agent i if Condition (3.7)

is satisfied.

(ci(jq) > i(j) V D(U, q) -1) Vu E A, (3.7)



3.6 Satisfying Temporal Constraints

Often in complex missions, there exist timing constraints between some of the tasks in

the task set. The Coupled-Constraint CBBA framework allows a timing relationship

to be specified between any pair of tasks belonging to the same activity. The pairwise

timing constraints can be written compactly in the form of a temporal constraint

matrix, 77 R(IAjIxAjI1). The (q, u) entry of 77 specifies the maximum amount of time

task jq can begin after task ju begins. Thus task ju must begin at least 77(q, u) before

task jq begins and at most 77(u, q) after task jq begins, which can be interpreted as the

relative time window imposed on task ju by task jq. There exists no sign restriction

on the entries of the temporal constraint matrix, which means that the relative time

window a task jq imposes on another task j, does not have to contain the start

time for task Jq. This makes it possible to specify constraints like before, or after

mentioned in Section 3.1. If no timing constraint exists between task jq and ju, then

77(q, u) = 7j(u, q) = oo. The diagonal entries of matrix 77 are 0 by definition.

Note that a task Jq is only permitted to impose timing constraints on tasks which

depend on jq. If there is no dependency relationship between q and u, a timing

constraint is not permitted: If Di (q, u) < 0 and Dj (u, q) < 0, then necessarily

77(q, u) = -(u, q) = oc.

To satisfy coupled timing constraints, it is necessary that each agent be aware of

the scheduled times of arrival of each of the tasks which have winners. Therefore, a

new information list is introduced, tz, A {tz 1 , ... , tZi(Nt)}. Entries are denoted tzi(j,)

for jq E J, and the list keeps track of the arrival times for each task in zi that has a

winner. tZi(jq) = 0 if task Jq has no winner according to agent i.

In the task selection phase of CBBA, agent i must calculate the interval of time

that is valid for each task under consideration to determine if that task is feasible

given their current path, and to determine the marginal score for that task. Agent i

considering task jq calculates the permissible start time by intersecting the original

time window for task jq with each of the coupled timing constraints imposed by the

agents winning each of the tasks upon which task jq depends. Agent i only considers



constraints imposed by elements of activity j with current winners according to agent

i's knowledge, namely zi and tzi.

Agent i needs to compute the interval [ ,T rJ"]where ri" is the minimum

allowed start time for task je given the current knowledge of agent i and rj" is the

maximum allowed start time for task jq given the current knowledge of agent i. Recall

that the original time window is given by [part, rnd].

T" is calculated by
3Jq

r max max t t( jqlzi), (3.8)
iq ( ={1,...,1Aj|},uayq cos 3Tq

where tm~int(j*, jqlzi) is the constraint imposed on the start time of task jq by the

agent winning task ju. It is given by equation (3.9), and is calculated for all elements

of activity j except element q. Notice that the constraint is only active if agent i

believes there is an agent winning task ja, and jA is dependent on jU r"1m" is taken

to be the tightest active constraint including the original time window.

t (uJ m tzju - 'T(u, q) if zi(ju) = 0 A DP (u, q) > 0 (39)

-oo otherwise

Similarly, r" is given by

rjmax = in m min tm", (ju, jqlzi), T nd (310)Su={1,...,1Aj|},u#q

where tmnst(ju, ql zi) is the constraint imposed on the start time of task jq by the

agent winning task ju. It is given by Equation (3.11), and is again calculated for

all elements of activity j except element q. The constraint is only active if agent i

believes there is an agent winning task ju, and jq is dependent on ju. Tj"' is taken

to be the tightest active constraint including the original time window.

tm (jujqlzi) = tzjU + 7j(q, u) if zi(ju) : 0 A Dj (u, q) > 0 (3.11)
00 otherwise



3.7 Enforcing Constraints

The purpose of the CBBA consensus phase is to resolve constraint violations in the

task assignment. In the baseline CBBA, the consensus phase is only concerned

with the conflict-freeness constraint. In the new framework, the consensus phase

is augmented to enforce the additional coupled constraints: unilateral dependency

constraints, mutual dependency constraints, mutual exclusions, and temporal con-

straints.

Tasks with Pessimistic Bidding Strategy During the consensus process, an

agent i may find that another agent in the network outbid it for some task jq in its

bundle. When this happens, jq as well as all tasks after jq in bundle bi are released.

These tasks which are released may be depended on by other agents to satisfy the

constraints associated with the tasks in their bundles. It is therefore necessary for

each agent i to verify at each iteration, that the tasks in their bundle bi which have

a pessimistic bidding strategy have all dependency constraints satisfied. If an agent

finds that it is winning a task jq which depends on some task which is no longer

assigned, it must release task jq as well as all tasks in their bundle after jq.

Tasks with Optimistic Bidding Strategy The protocol for optimistic bidding

requires that each agent keep track of the number of iterations they have been winning

a task with at least one violated dependency constraint. At each iteration, agent i

counts the number of satisfied constraints for each task in its bundle, and compares

it to the required number of satisfied constraints for that task. If it is less, vi(jq) is

incremented for each appropriate jq.

Agent i also checks vi(jq) for each task in its bundle. If vi(jq) = ojq for any task, then

jq is released from the agent's bundle and w 1L and Wan are each decremented by 1.

At this point, agent i has waited for oJq iterations of CBBA in hopes of acquiring all

of the partnering agents that task jq requires. The agent infers that if the constraints

are not satisfied by this time, then the other agents in the network are either unable

to select the tasks jq depends on or choose not to select them because other tasks



result in a greater score. Task jq is worth nothing to agent i unless all dependency

constraints are met, and so it releases that task so it can select other tasks. Agent i

also releases any task appearing in its bundle after jq, but does not decrement w 10

or w anyfor those tasks.

Enforcing Mutexes An agent i is allowed to bid on a mutexed task j as long as it

can place a bid larger than the current winning bid of all tasks that are mutexed with

jq, and larger than the winning bid for task jq itself. The agent placing the bid on

task jq assumes that the other agents will release the tasks mutexed with task jq once

they are informed that they were "outbid." Because of this protocol, it is possible

for an agent to discover that it is currently winning a task j, which is mutexed with

another task jq which it also believes to be assigned. Therefore it is necessary for each

agent to evaluate whether they are winning a task which is mutexed with another

assigned task at every iteration. Agent i is required to release task jq from its bundle

if it discovers another task j, where Di(u, q) = -1 and yi(ju) > Yi(jq) Thus agent i is

permitted to keep task jg at a given iteration only if

(Yi(jq) > Yi(j) V D(u, q) 5 -1) Vu E Aj, u : q (3.12)

Temporal Constraints Temporal constraints may become violated during the task

assignment process for a variety of reasons. Recall that the task selection phase of

CBBA is performed by agent i independently of all other agents, except for the

information agent i posses in zi and yi. Therefore, it is possible for several agents

to bid on elements of an activity in the same bidding round, possibly resulting in

conflicting arrival times. Additionally, when an agent selects the start time for a

task jq, it is only required to consider the constraints imposed by the tasks which jq

depends on. There may exist an agent k who is currently winning another task Ju

which unilaterally depends on jA. Now the start time chosen by agent i for task jq

may invalidate the start time already selected for task ju by agent k.

Therefore, it is necessary for each agent to check the temporal constraints for all



tasks in their bundle at each iteration. The method developed for enforcing timing

constraints is described in this section for two cases: 1) temporal conflicts between

tasks with unilateral dependency constraints, and 2) temporal conflicts between tasks

with mutual dependency constraints. The process is as follows:

At each iteration, agent i checks each task jq E bi for a temporal constraint

violation.

true if ( (tzi(j,) < tzi(j.) + T(q, u)) A (tzit(j) < tzi(j,) + T(u, q))

tempSat(jq) = u Vu {1, .. .IAj }, zi(j,) # 0

false otherwise
(3.13)

If tempSat(jq) = true the agent i keeps task jq as it is. However, if a task j" is

found whose start time is in violation with the start time for jg, then agent i may

have to release task jq.

If task jg unilaterally depends on ju, then agent i releases jq, because it is violating

a constraint imposed by a task assumed to be higher priority. The agent may re-bid

on task jq in the next iteration, as long as it can select a start time that does satisfy

the constraints.

If task j* unilaterally depends on jg, then agent i keeps task jq in its bundle.

The agent assumes that the agent winning task j, will also realize that jq and j, are

conflicted, and release task ju.

If task jq and ju are mutually dependent, then a special procedure is followed:

Assume that the score for a given task is monotonically decreasing within its time

window. Then the agent arriving earliest (with respect to the start time of the task)

is required to release that task. In this instance, it is assumed that the agent arriving

later in their task's time window would have chosen an earlier start time if it were

possible, since the score decays with time.

Given that agent i is winning task jq and agent k is winning task ju, and the start

times are conflicted, then agent i releases task jq if

tzi tar) r t st art (3.14)



Now each of the cases for the (jq, j,,) task pair have been accounted for when there

is a temporal constraint violation between them. If an agent is required to release

a task jq because of a temporal constraint violation, and task jq has an optimistic

bidding strategy, then ws1' and wa"Y are each decremented by one.
i(jq) i(jq)

The entire procedure for enforcing constraints (both dependency constraints, and

temporal constraints) is described by Algorithm 4, which is appended to the consensus

phase of CBBA.

3.8 Algorithm Changes

CBBA with Time Windows becomes Coupled-Constraint CBBA when the following

changes are made:

1. All subscripts j are changed to jq because tasks now belong to activities

2. Step 2 of Algorithm 2 is changed such that jq E Jicale for all jq E J, canBidi(jq)

true, where canBidi(jq) is calculated by Equation (3.5) or Equation (3.6).

3. Step 3 of Algorithm 2 is changed such that [jTi", rj""], calculated by Equations

(3.8),(3.9),(3.9), and (3.10) is used in place of [rjtar, Tjnd]

4. Step 8 includes tzi* = tt*

5. Algorithm 4 is appended to the consensus phase of CBBA with Time Windows.

3.9 Examples of Encoding Real-World Constraints

The Coupled-Constraint CBBA framework possesses the capability to handle many

constraint structures that would appear in real-world settings. However, encoding

the constraints into the dependency matrix and the temporal constraint matrix may

not be intuitive. This section provides several different examples of mission scenarios,

and describes the corresponding constraints matrices.



Algorithm 4 Enforce Constraints and Update Permissions for Cooperative CBBA

1. for all jq E bi

(a) Determine number of agents winning elements of j other than jq

,sat(jqlzi) = EZII IE ((zit(.) # 0) A (D (u, q) = 1))+
I E I ((zi(j.) 7 0) A (Dj (u, q) = 2)) >

E I ((zit(j) # 0) A (Dj (u, q) = 3)) >

(b) mutexSat = true if (Yi(jq) > yi(ju) V D(u, q) # -1 V E Aj, u / q)
false otherwise

(c) if task jq has pessimistic bidding strategy then

depSat { true if nsat(jq zI) = Nreq(jq)
false otherwise

where Nreq(jq) is calculated by Eq (3.3)

ii. tempSat =
true if ( (tZi(jq) < tzi(1 ) + T(q, u))

V (Dj(u, q) < 0) Vu E {1,. .. ,
false otherwise

A (tzit(.) < tzi(j)

AjI}, zi(U.) # 0

+ T(u, q)))

iii. if -mutexSat V -depSat V -tempSat then

Zi(jq) = 0 Yi(jq) = 0

(d) if task jq has optimistic bidding strategy then

i. if nsat (jqlzi) < Nreq(jq) then

"'i(jq) = Vi(jq) + 1

ii. depSat true
false

if vi(jq) < ogq

otherwise

iii. tempSat =

true i
false

f ( (tZi(jq) < tzi(ju) + T(q, u)) A (tzi(j.)

V (tZijq) - jt > tzi(ju) - start) V (D

S E 1,..., A1}, zi(.) 0
otherwise

< tZi(jq) + T(u, q))

j (u, q) 0)

iv. if -mutexSat V -depSat V -tempSat then

Zi(jq) = Y Yi(jq) = 0

solo = w -1
Wj(jq) - i(jq)- wany any

i(jq) - i~jq)



Priority Constraints: Track, Engage, Assess Damage Consider an environ-

ment containing a group of hostile targets with a priori estimated positions. The

mission commander desires that each target be first, tracked, then attacked, then

observed for battle damage assessment (BDA). In this case, track is primary, attack

is secondary, and BDA is tertiary. A task may not be performed unless the asso-

ciated task of higher priority is performed first (A target must be tracked before

it is attacked). However, performing a task does not obligate the team to perform

the associated task of lower priority (A target that is tracked does not have to be

attacked).

For each known hostile, an activity is instantiated with three elements. The first

element of each activity is a track task; the second is an attack task, and the third is

a BDA task. The dependency matrix corresponding to the jth hostile is given by

0 1 1

Dj =0 0 1

0 0 0

and the temporal constraint matrix is given by

0 -d(ji) -d(jl) - d(h2)

o 0 -d (h)

oc 0 - 0

Required Cooperation Many real-world scenarios involve a set of tasks, all of

which must be assigned for any of them to be valid, and they must have simultaneous

arrival. These include:

1. Cooperative transport

2. Rendezvous

3. Surprise attack

4. Joint sensing



The dependency matrix for a set of mutually required tasks of arbitrary size is

given by

0 1 ... 1

1 0

1 1 0

and the temporal constraint matrix is given by

0 --- 0

T=
0 --- 0

Super-Additive Score Structure Imagine a highly maneuverable, high value

target. The target may be tracked by a single UAV. However, since the target is

evasive, it may elude the UAV. Therefore, it is desirable to send two UAVs to track

the target if possible, severely reducing the probability of being evaded. The value of

sending a single agent is estimated to be 10, and the value of sending two agents is

estimated to be 50. The score structure is called super-additive because the combined

score is greater than the sum of the individuals.

The naive method of encoding the score structure includes two instances of the

track task, a primary and secondary. The primary track task is worth 10, and can be

assigned independently of other tasks; the secondary track task is worth 40, and it

is unilaterally dependent on the primary. This representation can introduce subopti-

mality because an agent is not allowed to place a bid on the secondary task until an

agent has placed a bid on the primary. Furthermore, an agent has little incentive to

bid on the primary task, so both tasks may go unassigned.

An alternative method exists for encoding this super-additive score structure.

Instead of two instances of the track task, three track tasks are instantiated: A,

B, and C. Track task A and B are mutually dependent, and they are each worth

25. Track task C is mutexed with both task A and task B. It is worth 10. With

this structure, agents can bid optimistically with the hope of getting a score of 25.



However, they only receive a reward of 25 if another agent agrees to cooperate with

them on the track task. If an agent bids optimistically on task A, but finds no agent

is available to perform task B, they are forced to release task A from their bundle.

However, at that point the agent may choose to bid on task C, even though it is only

worth 10. The dependency matrix for this track activity is given by

0 1 -1

Dtrack 1 0 -1

-1 -1 0

and the temporal constraint matrix is given by

0 0 00c

7Arack 0 0 Oc
ooc ooC 0

Not During Consider a scientific operation, such as robotic planetary exploration,

where a series of measurements are taken by a fleet of robots. Suppose there are

two measurements that are to be taken: measurement task A, and measurement task

B. Both measurements must be taken for either of them to be valid, however, they

cannot be taken simultaneously, due to equipment interference. The constraints can

be encoded by splitting one of the tasks into two instances. In this case, task B is

split into B- and B+. In this example, measurement task A is the first element of

the measurement activity, B- is the second element, and B+ is the third element.

Task B- is constrained such that it must end before task A begins, and task B+ is

constraints such that it must begin after task A ends. Since task B should not be

performed twice, tasks B- and B+ are mutexed. The dependencies are written such

that task B- depends on task A, task B+ depends on task A, and A depends on

either B- or B+. The dependency constraint matrix for this measurement activity



is:

0 1 1

Dmeasure [2 0 -1
2 - 1 0

and the temporal constraint matrix is given by

0 oo -dA

Tmeasure = [;B 0 o]

O 00 0

3.10 Numerical Results for Coupled-Constraint CBBA

3.10.1 Simulation Description

Coupled-Constraint CBBA is compared to the baseline CBBA using a simulation

to determine the merit of the assignments achieved. The mission scenario that is

simulated is a cooperative search, track, and engage mission. Participating in the

mission, are three types of agents. Agents of type A are weaponized uninhabited

aerial vehicles (WUAV), which are capable of engaging hostile targets. Agents of

type B are Sensor UAVs (SUAVs), and they are capable of providing the WUAVs

with accurate measurements during an engagement. Finally, agents of type C are

SUAVs, but are only capable of image capture; they cannot provide measurements to

a WUAV. Agent capabilities are described in the Table 3.2.

There exist several objects of interest in the mission environment. Some of the ob-

jects are confirmed hostiles, and it is desired that all hostiles be engaged. Some of the

objects are of unconfirmed identity, and more intelligence is desired regarding these

objects. The two different types of objects each have a specific activity associated

with them.

Activity type 1 is a service hostile activity and includes the following: hostile

targets may be engaged, which requires one agent of type A to strike the target

and one agent of type B to provide position measurements. The strike portion of



Table 3.2: Agent Parameters for Simulated Mission Scenario

Agent Parameters
Units Available 3

Type A: WUAV Capability Weapons Release
Max Velocity 50 m/s
Units Available 5

Type B: SUAV 1 Capability Sensing- Measurements to WUAV
Max Velocity 25 m/s
Units Available 8

Type C: SUAV 2 Capability Sensing- Image only
Max Velocity 15 m/s

the activity takes 120 seconds, and the WUAV and the SUAV must plan to arrive

within 20 seconds of each other. If one type A and one type B agent are assigned

to a service hostile activity, a type C agent may also be assigned to perform a battle

damage assessment (BDA). The BDA takes 180 seconds, and must begin at least

60 seconds after the strike is completed. If there is no strike package available to

engage the hostile target, a sensor UAV may be sent to observe the hostile, but it is

assumed that the reward for performing the intelligence gathering task is much less

than that for performing the strike task. The maximum score for a strike task is

100, the maximum score for a BDA is 50, and the maximum score for a intelligence

gathering task is 10. The time window for the activity is 600 seconds.

Activity type 2 is a tracking activity and involves visiting one of the objects

with unknown identity. This type of activity contains a single element which is an

information gathering task that can be performed by either a type B agent or a type

C agent. The duration is 60 seconds, and the maximum score for a tracking activity

is 10.

Half of the activities in the mission are of type 1, and half of the activities are of

type 2. The dependency constraint matrix for all activities of type 1 are given by DA

where A < II, and the dependency constraint matrix for all activities of type 2 are



given by DB where B > JI.

0 1

1 0
DA=

0 0

-1 -1

1 -1

1 -1

0 -1 [0]

-1 0

The temporal constraint matrix for all activities

A < L, and the temporal constraint matrix for all

T where B > I.

TA=

0 20
20 0

00 00

O 00

-180

-180

0

00

of type 1

activities

are given by TA where

of type 2 are given by

TB:= : 0

The simulation environment is 10 kilometers by 10 kilometers. Activity locations

are generated randomly, uniform in the environment. Agent initial positions are also

chosen randomly, uniform in the environment. The number of each agent type is

fixed: 3 of type A, 5 of type B, 8 of type C. The number of activities is varied as

a parameter, with half of the activities being of type 1, and half type 2. The time

windows for each activity are chosen such that the start time is random, uniform on

[0,300] seconds. Also note that the maximum bundle length, Lt is set to 4 for all

simulations.

Scoring The scoring for a given assignment is calculated such that only tasks which

are assigned without constraint violation count toward the assignment score. Also,

the baseline CBBA has no way to account for timing constraints, so the only way to

enforce them is to shrink the time window for the two elements of the strike task to

be 20 seconds long, and set the time window of the BDA to begin after the strike

window ends.



3.10.2 Simulation Results and Discussion

A Monte Carlo simulation is conducted over missions with randomly generated ini-

tial conditions. The number of activities is varied as a parameter and 80 trials are

simulated for each case. The simulation results show that CCBBA outperforms the

baseline CBBA in terms of the assignment score, which is the objective function

given by Equation (3.1). The average assignment score as a function of the number

of activities is shown in Figure 3-2.

Notice that the score for the assignments generated by the Baseline CBBA in-

creases as the number of activities increase, but only when the number of activities

is about 10 or fewer. As the number of activities increases beyond 10, the score for

CBBA-generated assignments flattens out, and actually begins to decrease when the

number of activities exceeds approximately 20. The reason for this behavior is that

when the ratio of tasks to agents, - is very low, most of the tasks get assigned,

but as the ratio increases, all tasks are not assigned (Recall that the bundle length is

limited to Lt = 4 in this case). When a very high percentage of the tasks in the task

set are assigned, the dependency constraints for the tasks are naturally satisfied, even

if the algorithm is not explicitly enforcing the dependency constraints. However, as

grows larger, each agent has increasingly more task options available. Given that

an agent selects a task, jq, the probability that all tasks which jq depends on are also

assigned decreases as -L- increases when using the Baseline CBBA.
N.1

Example: Consider a simple scenario with two agents and 10,000 activities, each

with two mutually dependent elements. The bundle length is fixed at 5. The proba-

bility that the agents both select the same activity is very low in this case.

Contrast this behavior to the behavior of the score for CCBBA-generated assign-

ments. The score increases with the number of tasks at a much higher rate compared

to CBBA, and does not posses this tendency to flatten out suddenly. The reason for

this is that CCBBA is explicitly enforcing the coupled constraints, whereas CBBA is

unable to do so.

The conclusion that can be drawn is that in order to maximize the score of the



assignment in a complex mission, the coupled constraints must be dealt with explic-

itly. Furthermore, as - increases, the performance difference between CBBA and

CCBBA becomes exaggerated, thus accounting for the coupling becomes increasingly

important.

Figure 3-3 further validates the conclusions drawn from Figure 3-2. This figure

compares the total number of tasks assigned by each algorithm as well as the number

of feasible tasks assigned. A feasible task is defined to be a task which satisfies all

constraints in the problem. Notice that the total number of tasks assigned is roughly

the same for each approach. However, for the baseline CBBA, the percentage of tasks

assigned which satisfy the constraints decreases as the number of activities increases,

thus adversely affecting the assignment score for the baseline CBBA. The figure also

shows that for CCBBA, all assigned tasks satisfy the constraints, which is reflected

in the assignment score.

Figure 3-4 shows the increase in computation for CCBBA compared to CBBA.

The metric for comparing computation is the required number of score calculations

to arrive at an assignment summed over the whole network. The comparison of

computation shows that for this mission scenario, the computation requirements are

approximately linear for CBBA, and approximately quadratic for CCBBA.

Figure 3-5 compares the communication requirements for the two algorithms. The

metric for comparing communication is the total number of messages parsed during

the assignment process summed over the network. This figure shows that for this

choice of mission parameters, CBBA has approximately constant communication re-

quirements with respect to the number of tasks, whereas CCBBA has approximately

linear communication requirements. The additional complexity is associated with the

optimistic bidding process, because agents must put forth additional effort to discover

that a task will not have the required number of satisfied constraints.

CBBA is known to have polynomial computation and communication require-

ments. Figure 3-4 and Figure 3-5 show that CCBBA is more computationally expen-

sive compared to CBBA, and requires additional message passing. However, CCBBA

preserves the polynomial time properties of CBBA. The penalty appears to be a



higher order polynomial in runtime complexity, and so there is a trade-off between

enforcing the coupled constraints and generating assignments quickly.

The consequences of the additional computation and communication are that both

the size of the network, and the number of tasks that can be handled by CCBBA

are more restricted compared to CBBA. However, CCBBA still provides a tractable

framework for complex missions involving large teams and many tasks. In this mis-

sion scenario, there were 16 agents and up to 30 activities, (75 tasks with coupling

constraints), and the assignments were generated in less than 40 seconds. (Note that

this runtime is for a simulation in the Matlab environment. The runtime would be

significantly reduced for a C++ implementation)

Interesting work has been done on an asynchronous communication version of

CBBA [35], which offers vast reduction in runtime, and significantly fewer messages

required for convergence. Future work involves integrating the Coupled Constraint

CBBA extension into the asynchronous CBBA framework. The result would be a

very fast solution for solving constrained task assignment problems, and it could be

implemented in real-world settings.

3.10.3 Convergence Properties

The baseline CBBA is guaranteed to converge if the score structure satisfies the DMG

property described in Section 2.4. However, the convergence proof does not apply to

CCBBA since an agent is sometimes required to release a task it was not outbid on,

to satisfy the coupled constraints. Although a formal convergence proof has not yet

been constructed for CCBBA, empirical evidence suggests that CCBBA preserves

the robust convergence properties of CBBA. A total of 1120 task assignments were

generated for the comparisons shown in Figures 3-2 through 3-5, and all cases con-

verged 100 percent of the time. A formal proof is the subject of future work on this

algorithm.



2500

2000-

S1500 -
a

-1M 1000 -

500 - .O ' --- . -'. - -O---.. '0 '''O--.O ''O

1'5

0 5 10 15 20 25 30
Total number of activities

Figure 3-2: Cooperative CBBA vs. Baseline CBBA, Assignment Score

0 Feasible T
--- Feasible T

Total Task
* Total Task

r0

asks CCBBA
s CBBA
s CCBBA

.. O'Q --

10 15 20
Total number of activities

Figure 3-3: Cooperative CBBA vs. Baseline CBBA, Number of Tasks Assigned

*'30

25

20

15

25 30

. I .........



x
8 r

4 -

0 ,

.E 3- ,,,0''
M ,,0
z 2 - ,,0,,,O'

,O'

5 10 15 20 25 30
Total number of activities

Figure 3-4: Cooperative CBBA vs. Baseline CBBA, Computation Complexity

14000

12000

10000

8000

6000

4000

2000

5 10 15 20
Total number of activities

25 30

Figure 3-5: Cooperative CBBA vs. Baseline CBBA, Communication Complexity



3.11 Summary

This chapter presents an algorithm extension to CBBA for handling coupled con-

straints in the task set. The additional constraints handled by the new framework

are unilateral dependency constraints, mutual dependency constraints, mutual exclu-

sions, and temporal constraints. Coupled-Constraint CBBA (CCBBA) is introduced

as an efficient mechanism for solving the constrained task assignment problem.

The task set is partitioned into activities, which are groups of tasks that share

coupled constraints. Two bidding strategies are developed. If a task is not mutually

dependent on any other task, it is given a pessimistic bidding strategy: agents wait

to bid on the task until all of its dependency constraints are satisfied. If a task

is mutually dependent on at least one other task, it is given an optimistic bidding

strategy: agents may bid on a task even if all dependency constraints are not satisfied,

as long as they have not exhausted their limited attempts on that task. An agents

is also required to release a task if it has been winning the task for too long without

the required number of satisfied constraints.

The quality of assignments for CCBBA are compared to CBBA in numerical

simulations. The simulation results demonstrate that explicitly handling the coupling

in the task set is necessary in complex missions to maximize the effectiveness of the

assignments. CCBBA requires more computation, and more communication than

CBBA, but the effects of this are expected to be reduced when the asynchronous

version of CCBBA is developed.



Chapter 4

Satisfying Refueling Constraints

with CBBA

Missions are often longer in duration than the maximum time the agents can operate

on a single tank of fuel, or a single battery charge. Mission planning must therefore

account for the agent's finite operational time, and schedule refuel times appropriately.

This chapter discusses the process of efficiently scheduling refuel times as part of the

task assignment process. Refuel is treated as a hard constraint, because in this

context it is assumed that if an agent fails to refuel the agent is lost. The assumption

is appropriate for many complex missions, in particular those where the agents are

operating in unknown or hostile environments.

4.1 Problem Statement

Consider a world with N, agents and Nt tasks. Recall that the set of all agent indices is

denoted I {1, . . . , NJ}, while the set of all task indices is denoted J A {1, ... , Nt}.

Each task, j E J, has a score function, Sj (aj, t) which represents the value that task

adds to the mission as a function of a3 C I U {0}, the index of the agent assigned to

task j, and tj E R+ U {0} the time the agent plans to arrive at the jth task location.

The goal of the task planner is to assign agents to tasks in such a way that the

cumulative score over all tasks in the task set is maximized. The objective function



is expressed
Nt

max S Sj (aj, tj) (4.1)
j=1

Each agent i in the network has a finite endurance that is a function of its maximum

fuel capacity, m'nel and nominal fuel burn rate rhi time invariant).

At time t, agent i has fuel muei(t) and can remain operational for at most

te m Mauei = (4.2)remain M nfuel
mfuel

before it needs to refuel. At time t, it is desired to assign the Nt tasks to the agents

such that each agent has one refuel time trefuel subject to

rel <; + tremain(t) - tmargin (4.3)

where tmargin is a buffer for safety purposes. In this problem, it assumed that there

are at least as many refueling berths at the base as there are agents, such that the

base can service an arbitrary number of agents simultaneously.

4.2 Approach

The Consensus-Based Bundle Algorithm can be modified to handle situations where

scheduling a particular event is a hard constraint. In the CBBA framework refueling

may be treated as a task, but not in exactly the same sense as any other task. The

refuel task differs by the fact that it is mandatory where as all other tasks are optional.

The index for the refuel task specific to agent i is denoted ri. Note that parameters

like location or duration that are associated with task ri may differ between agents.

Since the refuel task ri is always a part of agent i's future plan, it can be kept track

of separately, and does not need to be explicitly inserted into pi or bi. The scheduled

refuel time for agent i is denoted Ti(r) to be consistent with the notation for other

task start times.

During the task selection phase, an agent i may add tasks to its bundle bi and to



its path pi as long as the agent can also fit the refuel task into its path such that it

can travel to each of the tasks on time. If a task is added to the path such that the

refuel task no longer fits, the task is not permitted to be added, and thus its marginal

score is zero.

The main difference between this version of CBBA and the baseline CBBA, is in

the way the marginal scores for the tasks are calculated: Task j may be added to

agent i's bundle only if j can be inserted into the path pi such that the set of times

that the refuel task can begin, denoted rallowed is non-empty.

Given a path p,, .allwed is calculated

allowed(pi) = [to, to + temain(t) - tmargin] \ Qii(pi, (ri)) \ R 22 (pi, (ri)) ^ \ Qilpil (ri))

(4.4)

where Qj,(pi, ri) is the interval of time that is invalid as a start time for refuel task

ri because of the nth task in path pi. Specifically, task ri is not allowed to begin

inside Qjn(pi, ri), because it would be temporally too close to ri, meaning that agent

i would be either late to task pi, or late to task ri. Qiri(pi, ri) is given by

Qin(pi, ri) = [Tin - d, - A(tloc, tloc,,), ri, + dpin + A(tlocPi , tlocA)] (4.5)

Thus, task j may be added to agent i's path at location n only if

allowed ) 4.6)

ri is taken to be the maximum time over 7 allowed (pion j), so that the agent can remain

in service as long as possible while servicing as many tasks as possible. If no nj can

be found that satisfies condition (4.6), then marginal score cij = 0, because adding a

task is not allowed to prevent an agent from refueling. The procedure for calculating

marginal scores for CBBA with Refuel Constraints is given by Algorithm 5, which

replaces Algorithm 3 in the CBBA with Time Windows framework. The consensus

phase of CBBA with Refuel Constraints is unaltered from the original CBBA.



Algorithm 5 Calculate marginal score of task j given pi for agent i, CBBA with
Refuel Constraint

1. For All nj E {O,. . . , (lb)} where Fi(nj) = true

(a) Find Tearliest and rlatest such that agent i has sufficient time to carry out
the task before j and the task after j.

earliest max ((rjtart), (Trcur + A(aloci, tlocj)))7erles max ((tart), (ri(nj) +dP + A(tlocP .) , tlocj)))

l a t e s t ' T d
min ((rnd), (Ti(n+1) j - A(tloc , tlocp ±1)))

if n = 0
otherwise

if r ~ I
otherwise

(b) Initialize score and time for n location to be zero, which are rewritten if

[Tearliest, Tlatest] is feasible.

s(nj) = 0; t(n) = 0; t"refuel(n) = 0

(c) if (Tearliest > Tlatest) then

Fir(nj) = false

else

1.

s(nj) = max Sj (i, t)
earliestplatestI

arg max
tGE[rearliest,Tlatest

S (i, t)

Tallowed (pi) = [to to +temain(t - tmargin] \ Qil(Pi, (ri)) \ Q 2 (pi, (ri))

iii. if (Tlowed #0) then

tri(n) = max rlr ed

else
s(nj) = 0; t(nj) =0; trefuel (n) = 0

2. Record marginal score for task j, the location to insert it if chosen, and the
time to perform it if chosen, and the refuel time if j is chosen.

cij = max s(nj) nij = arg max s(n)
njE{o,...,[pil} nj Ef{0,...,|pil}

ti(r,) = trf (ni)

-\ QilIpilI(Pi, (ri))

tij = t(nij)



4.3 Numerical Comparison of Refuel Time Sched-

ulers

A Monte Carlo simulation is performed to study the quality of the assignments gen-

erated by CBBA with Refuel Constraints. The algorithm is compared to a refuel

algorithm introduced in [31], which is based on CBBA as well, but requires solving a

Mixed Integer Linear Program (MILP) during the task selection phase.

The simulation environment was developed as part of the Onboard Planning Sys-

tem for UAVs in Support of Expeditionary Reconnaissance and Surveillance (OPS-

USERS) program. A brief summary of the OPS-USERS mission scenario is provided

here; see Section 5.2.1 for a more complete description of the OPS-USERS architec-

ture.

4.3.1 Summary of OPS-USERS Mission Setting

The OPS-USERS mission scenario is multi-objective. The environment contains some

number of targets, unknown a priori, and the agents are required to find as many of

the targets as possible before the end of the mission. State estimates of each target

are also desired, so the agents are required to keep track of each target's estimated

position and velocity. Therefore, the mission planner must balance the amount of

effort spent searching for new targets, and the amount of effort spent keeping accurate

state estimates of the known targets.

To enable adequate time for searching, targets are not required to be tracked

continuously; instead, track tasks are generated for each known target of interest. A

track task consists of observing a target with the agent's sensor package. Tracking

a target for a period of time decreases the uncertainty associated with that target's

position and velocity. At the end of a track task, the tracking agent also instantiates

a new track task so that the target will be revisited in the future. The desired

revisit time is calculated based on the expected growth rate of the target's position

uncertainty. The task assignment algorithm is responsible for planning which agent



should perform each track task and decide when each agent should arrive at their

tasks subject to the dynamic constraints.

When agents have no tasks that require their immediate attention, their default

action is to search. Search is conducted via a receding horizon optimized trajectory

calculated over a dynamic probability map which characterizes the position estimates

of targets yet-to-be found. Search strategy is the subject of Chapter 5, and the reader

is referred to this chapter if more details are desired.

The purpose of this study is to quantify the quality of assignments generated by

CBBA using each of the two refuel schedulers in question. The primary responsibility

of the task assignment algorithm in this study is to assign track tasks while meeting

all refuel constraints. Therefore, the primary figure of merit is the percentage of time

each target is tracked after it is found. The secondary metric for evaluation is the

average reaction time to newly discovered tasks.

4.3.2 Parameters of Mission Simulation

For this mission scenario, there are 10 targets, 7 of which require tracking, and both

of these numbers are unknown to the agents a priori. Target positions are initialized

randomly, and their speeds are a random constant, drawn from a uniform distribution

of 5-15 meters per second. The team of autonomous agents comprises one Weaponized

UAV (WUAV), one autonomous watercraft, and two Sensor UAVs. Agents are inten-

sionally given small fuel capacity, to explore the effects of the two refueling strategies.

Maximum endurance ranges from 200-400 seconds and the mission duration is 30

minutes. Table 4.1 lists important agent parameters for the mission scenario tested.

A total of 40 Missions were simulated for each of the algorithms tested, and in the

interest of fairness, the same initial conditions were used for both.

4.3.3 Simulation Results

Detailed log files are recorded for each simulated mission, and important mission

metrics are then extracted. The metrics are as follows



Table 4.1: Agent Parameters for Simulated Mission Scenario, Refueling Algorithm

Comparison

Agent Parameters
Units Available 1

Type A: WUAV Capability Weapons Release, Detecting
Max Velocity 100 m/s
Max Endurance 400 sec
Units Available 1

Type B: Autonomous Watercraft Capability Detecting, Tracking
Max Velocity 25 m/s
Max Endurance 200 sec
Units Available 2

Type C: Sensor UAV Capability Detecting, Tracking
Max Velocity 75 m/s
Max Endurance 300 sec

1. Figure 4-1 gives a histogram of the percentage of time each target was tracked

after it was found. In the OPS-USERS framework a target is considered lost

when its position uncertainty exceeds a set threshold. The threshold is based

on the agents' sensor field of view and quantifies the maximum allowable uncer-

tainty such that the target can be re-acquired. The percentage of time targets

tracked metric is defined to be the amount of time a target is not lost, normal-

ized by the amount of time it is known to exist. For a given mission, this metric

is averaged over all targets found.

2. Figure 4-2 gives a histogram of the average reaction to each newly discovered

target. Reaction time is defined to be the amount of time between a target's

discovery and the first time it is tracked. If the agent that makes the discovery

is able to track the target right away, the reaction time is zero. However,

the discovering agent is not always able to perform the track task because of

constraints in the problem such as refueling. Reaction time for a mission is

averaged over all targets found.

3. Figure 4-3 provides a histogram of the number of targets found during each

mission. Finally,



4. Figure 4-4 provides a histogram of the percentage of the environment that was

searched during each mission. Percentage of environment searched is defined

as the total number of cells that were completely observed at least once during

the mission normalized by the total number of cells in the environment.

Each performance metric is averaged across the 40 trials and presented in Table

4.2. The results of the simulation show similar performance in the primary metric,

percentage of time targets tracked. Figure 4-1 shows that the distribution of time

targets are tracked is statistically similar for both refuel schedulers. However, Table

4.2 shows that there is a 25 percent decrease in average reaction time to new targets

when using CBBA with Refuel Constraints versus using the MILP refuel scheduler.

Consider the distributions of reaction times displayed in Figure 4-2. The reaction

time for CBBA with Refuel Constraints is more concentrated toward the smaller

reaction times, whereas the distribution for the MILP refuel scheduler has a longer

tail, extending out to 450 seconds. This indicates that the refueling time scheduler

presented in this chapter performs approximately equal to, and in some aspects better

than, the MILP refuel scheduler.

Figures 4-3 and 4-4 show that the search performance suffered slightly as a result

of using CBBA with Refuel Constraints instead of the original MILP. The cause

of the performance degradation is likely tied to the trade-off between searching and

tracking. When the system spends more effort tracking known targets, fewer resources

are available to search for new targets.

The main benefit of CBBA with Refuel Constraints is the reduced computational

load for the task planner compared to the MILP refuel scheduler. A short study

involving 8 agents and 20 targets was conducted to explore the computational cost of

both refuel strategies. It was observed that CBBA running the MILP refuel scheduler

could spend as much as 300 ms in the task selection phase. On the contrary, CBBA

with Refuel Constraints rarely spent more than 2-3 ms in the task selection phase.

For this size of mission scenario, CBBA with Refuel Constraints can run two orders of

magnitude faster than the original refuel algorithm. This study indicates that CBBA

with Refuel Constraints allows scalability to much larger problems with more agents



Table 4.2: Average Performance Metrics for Refuel Algorithm Comparison

Metric MILP CBBA with
Refueling Constraints

Percent total area covered 64.9% 51.6%
Avgerage number of targets 9.25 8.70
found
Percent time targets tracked 30.1% 31.5%
after discovery

Reaction time to new target 99.5 sec 74.4 sec

and more tasks compared to the MILP refuel scheduler.

4.4 Summary

This chapter presents a method for solving the task assignment problem under refuel

constraints. The new method is compared to an existing approach, which requires

solving a Mixed Integer Linear Program at every iteration. Numerical results confirm

that the new strategy outperforms the original strategy in the quality of assignments.

Furthermore, the computational complexity is greatly reduced enabling scalability to

larger problems.
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Chapter 5

UAV Search Strategy Comparison

5.1 Introduction and Background

Current UAV operations are largely focused on Intelligence, Surveillance, and Recon-

naissance (ISR). Critical in ISR type missions, is rapidly locating objects of interest in

the environment. This chapter compares several strategies for a team of autonomous

agents conducting search in a partially known environment. A baseline local search

framework is extended to include global knowledge into the decision making process,

and this extension is compared to several other search strategies. The strategies in the

comparison include the original local search algorithm, local search plus a supervisory

human model, global search protocol, global search plus human model, randomized

search, and systematic search. Each of these strategies are described in detail in

Section 5.2.

5.1.1 Problem Statement

Consider an environment containing a specific number of targets, Ntgts, where Ntgts

is unknown a priori to the planning system. Also in this environment are NA, agents,

which are deployed to search for the targets. The agents are autonomous, but possibly

under supervisory control of a human operator. The mission also may be multi-

objective. The mission may require that: targets are classified once found, certain



targets are revisited and tracked, hostile targets are engaged and neutralized, friendly

targets are protected, etc. The focus of this study is search performance, and the study

of other performance metrics are the topic of separate studies not presented here.

The metrics for success in a cooperative search mission are as follow:

" Number of targets found by end of mission- desired to be equal to the number

of targets in the environment

* Time required to find each target- desired to be as small as possible for each

target

" Percentage of search area covered by end of mission- desired to be 100 percent

" Average uncertainty of each cell during mission- desired to be as low as possible

For this study, the search algorithm performance is based on when each target is

discovered, if ever. The objective function used for the comparison, can be written as

Jf f(t)dt

PaIg = tO ()d (5.1)
(tf - to)(Ntgts)

where f(t) is the number of targets discovered on the time interval from to to t.

The upper bound of Paig, the normalized performance of a given algorithm, is 1.0

which occurs if all targets are inside the agents' collective field of view at time, to.

Performance is lowerbounded by 0.0, which occurs if the agents never find a target

during the mission. (Note: Paig would be 0.5 if the agents discovered all targets

uniformly in time throughout the mission, or if the agents discovered half the targets

at the beginning and never found anything else.)

Constraints in the problem include:

* Vehicle dynamics

- Maximum speed

- Minimum turning radius



" Refueling - vehicles must visit refueling base location before fuel is depleted

" Environment boundaries - vehicles must stay inside convex environment

5.2 Description of Algorithms

5.2.1 System Architecture

The simulation environment used in the search algorithm comparison experiment is

the environment developed for the Onboard Planning System for UAVs in Support of

Expeditionary Reconnaissance and Surveillance (OPS-USERS) program. The OPS-

USERS architecture is specifically designed to meet the challenges associated with

an automated decision-making system with a human in-the-loop. Two key challenges

are: 1) balancing the roles and responsibilities of the human operator and the au-

tomated planner, and 2) balancing resource allocation between searching for new

targets, and tracking previously found targets. The system attempts to rely on the

relative strengths of both humans, and smart machines. The basic system architecture

is divided into two major components. The Distributed Tactical Planner is actually

a network of Onboard Planning Modules (OPM) working together to achieve a com-

mon mission objective. The Ground Control Station consists of a Central Mission

Manager (CMM), which is used as a rapid analysis tool, and the Human Interface

(HI), by which the human operator interacts with the automated system. Figure 5-1

shows the OPS-USERS system architecture.

Onboard Planning Module

The Onboard Planning Module (OPM) is the heart of the OPS-USERS system. Each

autonomous agent is equipped with an OPM, which is responsible for the high-level

decision making for each agent. The OPM runs two major decision making processes:

1) The task planner is responsible for deciding which tasks each agent should perform

and when they should plan to arrive at each of those tasks. 2) The search algorithm

is responsible for planning a trajectory that maximizes information gain.
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Figure 5-1: OPS-USERS high-level system architecture

Tasks may include a variety of activities, including tracking targets that are al-

ready found (track tasks), changing the location from which local search trajectories

are generated (search tasks), engaging hostile targets, or refueling. Each of these

tasks are given a score which represents an estimate of how important that particular

task is to the overall mission. Task scores are typically a function of which agent per-

forms the task, and the time at which the task is performed. The task planner used

in OPS-USERS is the Consensus Based Bundle Algorithm (CBBA). See Chapter 2

for details.

In the OPS-USERS framework, search is a spare time strategy, that is, active

search only takes place when a vehicle has no immediate task it needs to do. Spare

time is defined as

isSpareTime(t) =
true

false

if (ttrans) < (tnextTask - t)

otherwise

where t is the current time, ttrans is the time required to travel from the current

location to the next task location along the shortest route, tnextTask is the time the

vehicle is scheduled to arrive at the next task in its plan.

(5.2)



Central Mission Manager and Human Interface

The Central Mission Manager (CMM) is a specialized planning module used between

the human interface and the distributed tactical planner. In a mission, it is often

infeasible to assign all tasks due to mission specific constraints. The CMM runs a

local centralized version of the task planner to determine a feasible subset of tasks

that the network of agents can carry out. The operator is then able to conduct rapid

analysis on the feasibility of performing a specific group of tasks, and is able to modify

the set of tasks under consideration. Every task set must be accepted by the operator

before those tasks are released to the distributed tactical planner. This planning done

at a more strategic level does not concern the operator with the mechanics of how

the tasks will be carried out, but allows the operator to decide which tasks should be

included in the plan.

The Human Interface (HI) conveys information to the operator such as agent

positions, agent fuel state, target probability distribution, known target locations,

etc. The HI also allows the operator to specify their preferences. The operator is

able to specify points of interest through the HI. A location chosen by the operator

becomes the location for a search task that is later given to the task planner if the

operator accepts a plan that includes it. In this way, the operator can guide the

search process if he or she chooses.

5.2.2 Local Search Algorithm

The Local Search Algorithm used during the search strategy comparison experiment

is the search algorithm developed for the OPS-USERS program. The objective of the

local search algorithm is to locate objects in the environment known as search targets.

Search targets are fictitious entities used to guide the agents to regions in the world

where there is high probability of discovering a physical target. Search targets can be

initialized before the start of a mission with a priority level, environment type, and

expected velocity, and multiple search targets may be instantiated at one time.

The local search algorithm is based on a set of cognitive maps stored in the



agents' memories. The map represents the world, and is discretized into cells. Each

cell contains a vector of probabilities, where the entries of the vector represent the

probability that a particular search target is present in that cell. When an agent

has spare time, i.e. no tasks to do, the agent may perform search. The local search

trajectory is generated based on the probability map. The agent builds up a search

tree which is depth limited to a predefined planning horizon. The quality of each

search path is based on which cells could be observed with the agent's sensor by

following that path. The score for a given cell, i is calculated by

Sceli(i) = (priorityk -pi(k)) (5.3)
kEStgt

where priorityk represents the relative importance of search target k. pi(k) is the

probability that cell i contains search target k. The score for a given path is calculated

by

Spath() (Scell(i) - perc3 (i)) - pen 45 ' 45 - pen9 - n0 go (5.4)
iElj

where Ij is the set of all cells observable on path j of the search tree. percy (i) is the

percentage of cell i that can be observed by following path j. pen 45 and pengo are time

penalties associated with making 45 degree turns and 90 degree turns respectively,

and nj45 and ny9 o are the number of 45 and 90 degree turns in path j. The agent

then selects the path that maximizes spath(j-

The search target probability distributions are updated in two ways. First, if an

agent observes a cell or knows of another agent that observes a cell with no target,

that cell's probability of containing a target is reduced. If perfect sensing is assumed,

the probability in that cell is set to

pi (k) = p (k) - (1 - percj(i)) (5.5)

where pi (k) is the probability that cell i contains search target k after the observa-

tion is made, p(k) is the probability that cell i contains search target k before the

observation is made, and percy(i) is the percentage of cell i that was observed.



Since targets are assumed mobile, the search target probabilities also diffuse with

time. The target model assumes that target motion is independent of agent activity.

Targets are neither cooperative (attempt to minimize the time until they are found)

or adversarial (try to maximize the time until they are found). The diffusion model

is described by

pn"(k) = min (pld(k)+ S p ld(k) Pt rans(j, i) i(pld(k) <pld (k)) m (ld(k))
jEA(i,k)

(5.6)

where pe"(k) is the probability that search target k is in cell i after the propagation,

pld(k) is the probability that search target k is in cell i before the propagation,

N(i, k) is the set of cells that neighbor cell i, and are not obstacles for the kth search

target environment type, ptrans(j, i) is the probability that a target travels from cell j

to cell i during one time step, and E(-) is the indicator function that returns 1 if the

argument is true, and 0 otherwise.

The propagation can be thought of as a "high-to-low" mechanism where proba-

bilities only flow from a cell with higher probability to cells with lower probability.

Coordination in the search problem context refers to planning paths that produce

maximum information gain collectively. This is typically accomplished by agents

choosing paths that do not cover the same region in space. The coordination strategy

in OPS-USERS is as follows:

Before the mission begins, each agent is given a priority level based on their id

number. At each time step during the mission, each agent communicates its current

trajectory to every other agent. If agent i has spare time, meaning the agent has more

than enough time to get to its next task, it generates a search path. For each agent

of higher priority j < i, agent i determines which cells agent j will observe along

its planned trajectory, and these cells are added to a list inFOV. For each agent of

lower priority j > i, agent i determines which cells agent j will observe only along

the frozen trajectory (execution horizon), and these cells are also added to the list

inFOV. The cells in inFOV are then considered already searched when the search

tree is constructed.



5.2.3 Global Search Strategy

The purpose of developing a global search strategy is to improve search performance

by increasing the effective planning horizon. The two key elements of this search

protocol are

1. intelligently deciding whether an agent should plan a locally optimal trajectory

from where they are (use local search algorithm), or move to a different location

and plan their trajectory from there, and

2. deciding where an agent should begin their new locally planned trajectory

should they choose to abandon their current location.

The global search algorithm selects task locations in a decentralized manner, and

assigns scores to each task that represent how useful it would be to search the space

around that task location. Each agent also keeps an estimate of the value of traversing

a locally planned search trajectory. The critical criterion for abandoning the locally

planned search trajectory in favor of traveling to a new task location instead, is

sufficient information gained at the task location under consideration. Therefore,

agents are only eligible for tasks that have a higher score than their current threshold.

The metric that quantifies the quality of the information gained by a local search

trajectory is

Tiocalsearch - 1Poptiloo (5.7)

where TocalSearch is the local search threshold, and Ppt is the set of scores associated

with each of the cells visible along the trajectory planned by the local search algo-

rithm. The cell scores are calculated based on equation 5.3. The threshold represents

the score of the most valuable cell observable along the locally optimal search path.

The second key element of the global search strategy involves selecting candidate

locations to search. For an environment that is discretized into Ncenis cells, enumerat-

ing each cell as a candidate search task location may be computationally prohibitive

for large Ncenis. Instead, the environment is partitioned into sampling zones. The

number of sampling zones, N,, is a mission parameter, and is chosen before the mis-



sion begins based on the size of the environment and the available computational

capability. Each sampling zone is comprised of Nscan contiguous cells, where typically

Nscan Nceiis/Nsz. During a mission, sample zones are compared to determine which

zones should contain search tasks, and only one search task may exist per zone. The

value associated with a search task in zone z is computed

EiEz (scenlO
Nscan

where Scei(i), the score for cell i, is computed just as it was in the local search strategy,

except there is an added weighting based on the time since the cell was last visited.

Equation 5.3 is modified to become

Sceii(Z) = (priorityk - pi(k) - + t - iastvisit(i) (5.9)

kEStgt (( tf - to]

where t is the current time, tiastvisit(i) is the time cell i was last visited, and E[tj - to]

is the expected mission time. The additional time weighting favors visiting cells which

have not been visited recently over cells that have. Note: At the start of a mission,

tlastvisit may be initialized to a large negative number, tlastVisit < -E[tf - to], which

bias the search toward cells that have never been visited.

The process of selecting desirable locations to search is distributed across the

network of agents. The responsibility partitioning at a given time step is based on a

Voronoi diagram. The diagram is constructed using the agent locations as the Voronoi

sites. Agent i is responsible of posting possible search tasks in zone z according to

Z E zi iff diz < djz Vj E 1, j (5.10)

where zi is the set of zones for which agent i is responsible, diz is the distance from

agent i to the centroid of zone z, djz is the distance from agent j to the centroid of

zone z, and I is the set of all agents in the network.

In figure 5-2, Ncens = 108, Nsz = 12, Nscan = 9, and there are 5 agents. Using rule

5.10, the Table 5.1 is generated.



Figure 5-2: Voronoi regions for agents searching an environment

Table 5.1: Corresponding zones for a five agent fleet

Agent [ Zones responsible for

UAV 1 1,2,5
UAV 2 3
UAV 3 4,8
UAV 4 6,9,10,11
UAV 5 7,12

At each iteration of the search task generator, each agent computes the mean and

standard deviation of the sampling zone values

(5.11)zez (V(z))

pz =A T

where pz is the arithmetic mean of the values of the sampling zones, and Z is the set

of all sampling zones, and

Uz= N- 1  (v(z) - pz)2

sz zEZ

where az is the standard deviation in the values of the sampling zones.

(5.12)

MM. . ................



After agent i has determined the elements in zi and computed pz and Uz, it selects

zones that satisfy

v(z) > pz + a, - Oz (5.13)

where a, is a tuning parameter which sets the sensitivity of the task generation

protocol. If the condition is satisfied for zone z, and no task exists in zone z, then a

task is created. If a task already exists in zone z, its value is updated.

The decentralized strategy requires that each agent carry a position estimate for

every other agent in the network. Agents must therefore periodically communicate

their positions to each other, or be informed by an outside source, i.e. satellite. The

procedure for global search is shown in algorithm 6.

5.2.4 Human Operator Model

For the purpose of comparison, it is desired to conduct mission simulations both with

and without the human operator. Human subjects were unavailable for this study, so

a simple model of how operators interact with the planning system was constructed,

with an emphasis on the search responsibilities of an operator. The model is based on

data collected during a short-duration, high-workload human experiment which was

developed and run by the Humans and Automation Laboratory (HAL) at MIT. Key

elements of the human operator model are: frequency of new search task generation

(how often), and search task location selection (where).

Data regarding the mission times at which operators selected search tasks was

analyzed to find an accurate distribution reflecting the time between search task

location selection. In figure 5-3, a normalized histogram of the time between new

search task instantiation is plotted for a human supervising an OPS-USERS mission.

The distribution is approximately log-normal with parameters mean, P = 3.32, and

variance, a = 0.706. To recreate a realistic frequency of task generation in the

human model, the actual time between search task generation is draw from a log-

normal probability distribution. For example: If a new task location is chosen by the

human model at time t, the next time at which a new location will be chosen is t + dt



Algorithm 6 Global Search Algorithm

procedure Main()
for t = [1 : missionTime] do

if t mod planRatetaskGen == 0 then
Zme +- calculateVoronoi(agents, Z);
postNewTasks(zme, Z, taskSet)

end if
if hasSpareTime == true then

generateLocalSearch (gridWorld);
else

execute tasks me.popO;
end if

end for

procedure CalculateVoronoi(agents, Z)
for all z E Z do

foundCloser <- false;
for all a C agents, a # me do

distThem - /(a.x - z.x) 2 + (a.y - z.y)2

distMe = -(me.X - z.x) 2 + (me.y - z.y)2
if distThem < distMe then

f oundCloser <- true;

break;
end if

end for
if -if oundCloser then

Zme.add(z);
end if

end for
return Zme;

Procedure postNewTasks(zme, Z, taskSet)
pz <- calcMean(Z);
o <- calcStdDev(Z);

for all z E zme do
value <- evaluateValue(z);

if value > pz + a, -dz then
cellbest <- arg maxcez.cells sceli(c);
task, +- cellbest.x;
tasky +- cellbestY;
if "taskz C taskSet then

updateTask(taskx, tasky, value);
else

postTask(taskx, tasky, value);
end if

end if
end for 92



0.03

0.025 -

C
w 0.02
cra)
LL

- 0.015a)
N

0.01

0.005

0
0 100 200 300 400 500

Time Between Search Task Creation (Sec)

Figure 5-3: Distribution of time between search task creation for human operator

where dt is a random variable pulled from the probability distribution shown by the

red line in figure 5-3.

The modeling of where human operators select search tasks is based on a qual-

itative analysis by the HAL team members who oversaw the short-duration, high-

workload study. The human interface visually displays a cognitive map to the op-

erator, where cells with high score are shown with a purple shading. The members

reported that operators tended to select task locations in regions with large amounts

of shading, or high-score cells. The members also reported that operators in the

study tended to select search task location far from the agents, such that the agents

would go to locations where the local search algorithm would not necessarily take

them. Based on these general rules, task locations are chosen based on the following

procedure:

1. Select map quadrant with largest number of cells that have higher-than-average

probability of containing a search target. Add all cells in quadrant to Samplehuman



2. Subtract any cell within rdisk of nearest agent from Samplehuman

3. With uniform probability, randomly draw cell from Samplehuman

5.3 Simulation Parameters and Environment De-

scription

A total of six search strategies are compared in this experiment. The strategies in

the comparison are

1. Local search with no operator

2. Local search with human operator model

3. Global search with no operator

4. Global search with human operator model

5. Systematic search

6. Random walk

Strategies 5 and 6 are benchmarks used for comparison. The systematic search

implemented for this experiment is a "lawn mower" search path. The world is divided

into N, rectangles, and each agent traverses its own rectangle by sweeping back and

forth in a similar fashion as someone mowing a lawn. When an agent needs to refuel,

they leave their sweeping path to do so, and return to the same spot and resume.

The random walk is implemented as an approximation to Brownian motion. Each

time through the planning loop, a cell is chosen at random from the 8 cells that

surround the agent's current cell. The randomly chosen cell becomes the agent's next

waypoint.

Monte Carlo simulation are run to compare the performance of the six strategies.

A total of 50 missions are simulated for each of the six strategies, and initial conditions

are randomly generated for each of the 50 missions. The mission objective is to find



Table 5.2: Simulation parameters, environment

Parameter | Value

Dimensions 12.5 x 7.5 km

Cell size 150 x 150 m
Number of sampling zones, N8 , 70
Cells per zone, Nca, 81
Base location (0,0) (Environment center)
Mission duration 1000 seconds

Table 5.3: Simulation parameters, agents

Parameter Value

Number of agents, N, 3
Environment type Air
Cruise speed 100 m/s
Cruise altitude 1100 m
Sensor type Camera
Sensor footprint 910 x 680 m, rectangle
Initial position Random uniform on 2000 m square around base

Maximum time between refuel 400 sec
Initial fuel Random uniform on [200,400] sec

Table 5.4: Simulation parameters, targets

Parameter | Value

Number of targets, Nt9 t, 10
Environment type Ground
Cruise speed Random uniform on [3,5] m/s
Initial position Random uniform over ground cells

as many targets as possible as early in the mission as possible. In this mission, once a

target is found, it is not required to be tracked, since this study is entirely scored on

search performance. Important mission parameters are listed in the following tables.

Table 5.2 lists parameters associated with the mission and simulation environment.

Table 5.3 lists parameters associated with the autonomous agents. Table 5.4 lists

parameters associated with the targets of interest.

Two studies are conducted with differing initial information. In study 1, the

planner is informed that all targets are ground vehicles, so the a priori probability



Figure 5-4: A priori probability distribution for informed initial conditions study

Figure 5-5: A priori probability distribution for uninformed initial conditions study

distribution is uniform over only the ground cells. Study 1 is referred to as the

informed initial conditions study, and the initial probability distribution is shown in

5-4. In study 2, the planner is not informed that all targets are ground vehicles, so

the a priori probability distribution is uniform over all cells. Study 2 is referred to

as the uninformed initial conditions study, and the initial probability distribution is

shown in 5-5.



5.4 Numerical Comparison of Performance

The simulation performance results are presented here. The results from the informed

initial conditions study are presented first. Figure 5-6 shows the number of targets

found as a function of mission time, averaged over the 50 trials, and Figure 5-7

presents a histogram of the number of targets found by the end of the mission. All

error bars in this section show the 95 percent confidence interval for the corresponding

value.

The random walk search performs extremely poorly compared to the other search

strategies studied. The random walk is included in the study not because it is expected

to perform well, but because its performance gives insight into the difficulty of the

problem. In this scenario, the targets are sufficiently difficult to find that a random

walk search discovers fewer than one target on average by the end of the mission.

Furthermore, the random walk never found more than three targets for the 50 missions

simulated, as seen in Figure 5-7. The lawn mower search performs much better

than the random walk, but is still significantly worse than the four optimized search

strategies in the study. Notice in Figure 5-6 that both the random walk and the

lawn mower search seem to find targets at a linear rate with respect to time, whereas

the other four strategies are linear during about the first quarter of the mission, but

then gradually level out. The difference is because the optimized search strategies are

always attempting to search high probability regions first, whereas the lawn mower

pattern covers the environment in a predefined fashion.

Figure 5-7 shows that both the global search strategy and the lawn mower search

strategy found all 10 targets for 49 of the 50 missions, and always found at least 9

targets by the end of the mission. This indicates that these two techniques are very

reliable in terms of the number of agents found by the end of the mission. However,

the global search strategy performs much better in terms of minimizing the time

required to find each target as seen from Figure 5-7.

Of the four optimized search strategies, the global search strategy performs the

best as shown in Figure 5-6. The curve showing the number of targets found as a



function of mission time for the global search algorithm lies near or above the curves

for all of the other strategies presented, and the error bars show that the difference is

statistically significant. The local search strategy alone performs the worst of the four

optimized search strategies, and the remaining two cases, local plus human model,

and global plus human model, fall in between and are not statistically different.

The study demonstrates the benefit of extending the effective planning horizon

through either a centralized human operator, or a global search protocol, and in this

case, the global search protocol is more effective than the human operator model.

However, the study supports that mixing the roles of the human operator with what

the automated planner is trying to accomplish is not necessarily beneficial: the helpful

benefits of each do not simple sum together. In this case, both the human operator

and the global search task generator are selecting locations to seek out, and cause

interference with each other. As a result, the global search plus human strategy

performs worse than the global search strategy alone.

The results from the uninformed initial conditions study are presented next. Fig-

ure 5-8 shows the number of targets found as a function of mission time, averaged

over the 50 trials for the uninformed initial conditions study. Figure 5-9 presents a

histogram of the number of targets found by the end of the mission. Finally, Figure

5-10 illustrates the relative performance of each algorithm averaged over 50 trials,

comparing both informed and uninformed initial condition cases. The score that is

depicted is described in equation 5.1, and it represents how quickly each of the targets

are found on average. The scores in Figure 5-10 are calculated by integrating each of

the curves in Figures 5-6 and 5-8.

The results of the uninformed initial conditions study are very similar in nature

to the results from the informed initial conditions study. The main difference here

is that the performance difference is smaller between all of the strategies considered.

The random walk, and the lawn mower search pattern performance are independent

of the initial conditions of the probability map, because they do not use it for path

planning. However, each of the optimized search strategies suffer a performance loss

for uninformed initial conditions compared to informed initial conditions as shown



in Figure 5-10. The performance difference for the optimized search strategies exists

because they each use the probability map to guide the search. Therefore, being

informed that a certain group of cells in the environment has a zero probability of

containing a target is very useful for such algorithms. With this information, they

can avoid wasting time searching needlessly.

Overall, the two studies confirm that the global search strategy is an effective

method for extending the planning horizon of the local search algorithm, and results

in a greater number of targets found during a mission, as well as reduces the amount

of time required to find a given number of targets. The studies also show that a

human can be effective in providing useful information to an automated system, but

the integration must be done with care to avoid conflicting decisions when there is

overlap in the responsibilities [45].

5.5 Summary

This chapter presents a baseline local search strategy which is a receding horizon opti-

mization over a dynamic probability map. A global search strategy is developed which

extends the capabilities of the local search algorithm by examining the entire proba-

bility map, and generating search tasks in a decentralized manner. The strategies are

compared both with a human operator model, and without a human operator model,

and the simulation results demonstrate the that global search algorithm without the

human model performs the best in terms of number of targets found.
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Chapter 6

Conclusions

The objectives of this thesis are to: 1) develop a decentralized task planning method

that is capable of handling coupled constraints, and 2) develop a decentralized search

strategy that improves upon existing approaches, and mitigates some of the effects

of myopic trajectory generation. Both of these objectives were accomplished in this

thesis. The Coupled-Constraint CBBA is introduced in Chapter 3, and a global search

protocol is discussed in Chapter 5.

6.1 Thesis Summary

Chapter 1 of this thesis introduces the two thesis objectives, and discusses some of

the previous work in the area of mission planning for autonomous agents. There

currently exist methods for satisfying general coupled constraints, but most of these

techniques are centralized; a decentralized approach is desirable to overcome some of

the communication limitations and robustness issues common in centralized planning.

Current autonomous search frameworks often utilized cognitive maps for trajectory

generation, and plan trajectories according to a receding horizon optimization. The

approach is tractable for real-time path planning, but can suffer in performance due to

near-sightedness. Therefore, a method of extending the planning horizon is desirable.

Chapter 2 explains the baseline task assignment algorithm. CBBA comprises two

phases. In this first phase, task selection, agents build a bundle by sequentially select-
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ing tasks which result in the greatest score increase for their bundle. In the second

phase, consensus, agents communicate with neighboring agents to resolve conflicts in

the assignment. CBBA is guaranteed to converge to a conflict-free assignment that

is at least 50 percent of optimal if the network if strongly connected, and the score

structures satisfies a property call diminishing margin gain (DMG). CBBA with Time

Windows is also introduced in this chapter, which enables the algorithm to produce

assignments for time-sensitive tasks. CBBA with Time Windows is shown to satisfy

sufficient conditions to guarantee convergence.

Chapter 3 presents an algorithm extension to CBBA for handling coupled con-

straints in the task set. The additional constraints handled by the new framework

are unilateral dependency constraints, mutual dependency constraints, mutual exclu-

sions, and temporal constraints. Coupled-Constraint CBBA (CCBBA) is introduced

as an efficient mechanism for solving the constrained task assignment problem.

The task set is partitioned into activities, which are groups of tasks that share

coupled constraints. Two bidding strategies are developed. If a task is not mutually

dependent on any other task, it is given a pessimistic bidding strategy: agents wait

to bid on the task until all of its dependency constraints are satisfied. If a task

is mutually dependent on at least one other task, it is given an optimistic bidding

strategy: agents may bid on a task even if all dependency constraints are not satisfied,

as long as they have not exhausted their limited attempts on that task. An agents

is also required to release a task if it has been winning the task for too long without

the required number of satisfied constraints.

The quality of assignments for CCBBA are compared to CBBA in numerical sim-

ulations. CCBBA is shown to produce superior assignments compared to CBBA for

tasks sets with coupling. The results demonstrate that enforcing coupled constraints

must be handled explicitly in a complex mission to achieve maximum performance;

however, some additional computation and communication is required.

Chapter 4 presents a method for solving the task assignment problem under refuel

constraints. The new method is compared to an existing approach, which requires

solving a Mixed Integer Linear Program at every iteration. Numerical results confirm
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that the new strategy outperforms the original strategy in the quality of assignments.

Furthermore, the computational complexity is greatly reduced enabling scalability to

larger problems.

Finally, Chapter 5 presents a baseline local search strategy, which is a receding

horizon optimization over a dynamic probability map. A global search strategy is

developed which extends the capabilities of the local search algorithm by examining

the entire probability map, and generating search tasks in a decentralized manner.

The strategies are compared both with a human operator model, and without a

human operator model, and the simulation results demonstrate the that global search

algorithm without the human model performs the best in terms of number of targets

found.

6.2 Future Work

Coupled-Constraint CBBA can benefit from addition research in several areas. First,

the convergence properties of CCBBA should be thoroughly studied to understand

the algorithm's behavior. A sufficient condition to guarantee convergence, analogous

to DMG for CBBA, would be useful. Also, the effects of the algorithm parameters

should be studied. An experiment should be run to determine how the choice the

timeout variables affect performance and runtime. An additional experiment should

be run to study the effects of the initial values for wsOL and wn. Both experiments

should be run across a wide variety of network topologies to understand key features

and limitations of the algorithm.

Autonomous search can benefit from additional research as well. In particular,

the problem of autonomous search with a human-in-the-loop should become better

understood. A large-scale study should be conducted on how to best structure the

roles and responsibilities between the human operator and the planning system for

autonomous agents searching an enviroment.
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Appendix

Consensus Table for CBBA
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Table A.1: CBBA Action rules for agent i
regarding task j

based on communication with agent k

Agent k (sender) Agent i (receiver) Receiver's Action

thinks Zkj is thinks zij is (default: leave )
i if Ykj > yij -+ update

k k update

m V {i, k} if skm > Sim or Ykj > yij - update

none update

i leave

k reset

m V {i, k} if skm > Sim -4reset

none leave

i if skm > Sim and Ykj > yij -- update

k if Skm > Sim - update
else -± reset

mn V {i, k} rn Skm> sim - update

if s8m> sim and skn > Sin - update
n {i, k, m} if Ski > sim and Ykj > yij -4 update

if skn > sin and sim > Skn -- reset

none if skm > Sim - update

i leave

none k update

m V {i, k} if skm> sim 9 update

none leave
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Appendix B

OPS-USERS Demonstration and

Results

To demonstrate the technologies developed during the OPS-USERS program, the

planning system was implemented with hardware-in-the-loop into MIT's Real-Time

Indoor Autonomous Vehicle Test Environment (RAVEN), at the Aerospace Controls

Laboratory [46-49]. Several mission scenarios were tested, and data was collected to

characterize the performance of each mission.

B.1 Description of Testbed

RAVEN features a 780 square foot testing space. In this space, a Vicon motion

capture system is used to measure the state of each vehicle in the environment in

real time. The room is suitable for experiments requiring a large space, and involving

multiple vehicles. Figure B-1 shows a photo of the flying space.

B.1.1 Motion Capture System

The Vicon Motion Capture System uses a constellation of 12 Vicon cameras. Each

Vicon camera has several components in addition to the optical camera itself. The

strobe is an array of Light Emitting Diodes (LEDs) in the near-infrared portion of

109



Figure B-1: RAVEN Flying Space

the electro-magnetic spectrum. It emits a cone of light in a predefined direction,

which is absorbed, reflected, and scattered by objects in the environment. However,

the environment also contains special reflective spheres, or markers which strongly

reflect the light directly back to its source; these markers are assumed to be the most

reflective objects in the environment. To measure marker positions, each camera

has an optical sensor which detects portions of the captured image with large return

of light. Also, each camera is equipped with a processing unit for calculating the

centroid of each detected marker. Before an experiment, the system is calibrated to

record the position and orientation of each of the cameras with respect to the user-

defined origin. The system uses a right-handed Cartesian coordinate system. After

calibration, the system stores x, y, z positions, as well as the direction cosine matrix

for orientation for each camera.

To each vehicle to be tracked, a unique pattern of markers is affixed. The vehicles'

marker patterns are entered into the motion capture system computer, and stored in

memory. Once stored, the system can uniquely recognize each vehicle in the envi-

ronment. During operation, the constellation of cameras simultaneously measure the

position of the markers in their field of view. Each camera is able to measure marker

position in two dimensions. At runtime, each camera streams the 2-D information
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to a central processor, which compiles the data from all of the cameras. The data

is processed in real time to determine the position of each marker in three-space.

The system then matches the marker patterns in the environment to the marker pat-

terns stored in memory, and reconstructs the position and orientation of each vehicle.

RAVEN Data Stream (RDS) is an estimation process that runs in parallel to the

motion capture system. RDS uses a Kalman filter to generate filtered state informa-

tion for each vehicle. The Kalman filter uses a simple double integrator dynamics

model, and uses Vicon data as the measurement vector. State information available

from RDS includes position, velocity, orientation, and body rates, and is available at

speeds up to 100 frames per second.

B.1.2 The RAVEN Vehicles

Two types of vehicles were used in RAVEN during the OPS-USERS demonstrations.

Quadrotor helicopters (see Figure B-2) were used as the UxV autonomous agents.

Quadrotors are ideal indoor test vehicles because they have hover capability, they

are relatively small and light-weight, and they can carry a small payload, such as

a camera. The flight code used to control each quadrotor is a quaternion based

controller developed and implemented by ACL. The flight code runs on external

computers which are linked to the vehicles via a wireless modem.

ACL also owns a fleet of ground vehicles. The Ground Platform for Unmanned

Cooperative Control (GPUCC) vehicles served as the targets during the OPS-USERS

tests. GPUCCs are modified Creates developed by iRobot. During missions, these

vehicles followed predefined trajectories, which were unknown to the agents at the

start of the mission. Each target has a different color marker on the top which allows

it to be uniquely distinguished by both the unmanned agents and the human operator.

Figure B-3 shows a GPUCC in the RAVEN test bed.
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Figure B-2: Quadrotor Helicopter Equipped with Wireless Camera

B.2 OPS-USERS Demonstration

A variety of missions were flown in RAVEN spanning several weeks. Missions were

flown with three autonomous agents, five targets, and one human operator. Pa-

rameters for a typical mission are described as follows: Two of the quadrotors were

designated Sensor UAVs, and one was designated a Weaponized UAV (WUAV). The

maximum speed of each vehicle was artificially limit to scale the environment appro-

priately. See Table B.1 for additional information on agent parameters. A total of

five targets were in the environment during a mission. Two targets were hostile, two

targets were friendly, and one target was unidentifiable. One of the five targets was

a pop-up target and could not be detected before mission time 725.

Three refueling bases were created in the environment, one for each UxV. At the

beginning of the mission, each UxV began at its own refueling base. After takeoff,
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Figure B-3: Ground Platform for Unmanned Cooperative Control (GPUCC)

each UAV maintained a constant altitude, and followed the waypoints generated by

the planner. The target trajectories were specified on the environment map before

the mission, but that information was never revealed to the planning system. Figure

B-4 shows the position of each of the refueling bases, as well as the target trajectories.

B.2.1 Mission Example

In this subsection, an example mission is shown, and key features of the OPS-USERS

system are highlighted. At the beginning of the mission, the operator initiates the

takeoff sequence for each of the UAVs. The UAVs then take-off automatically, and

hover above their base until the mission is started. The operator has the option of

selecting search tasks before the start of the mission. In Figure B-5, there is a prior

probability distribution for target locations, so the operator makes the strategic high-

level decision to create search tasks at the regions of high probability. If no such prior

distribution is available, the operator may choose to place search tasks systematically,

or per advice from the command center, or not at all.

As the mission gets under way, the planner schedules tasks for the agents, and

they are carried out autonomously. In Figure B-6, the SUAVs are assigned to the

search tasks that the operator requested, and in this case each SUAV is assigned three
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Table B.1: Agent Parameters for Demonstrated Mission Scenario

Agent Parameters
Capability Weapons Release, Detection
Max Velocity 0.18 m/s
Cruise Velocity 0.12 m/s

Type A: WUAV Nominal Altitude 1.1 m
Fuel Capacity 4.5 units
Initial Fuel 4 units
Fuel Consumption Rate 0.01 units/sec
Capability Detection, Tracking
Max Velocity 0.18 m/s
Cruise Velocity 0.12 m/s
Nominal Altitude 1.3 m
Fuel Capacity 4.5 units
Initial Fuel 3 units
Fuel Consumption Rate 0.01 units/sec
Capability Detection, Tracking
Max Velocity 0.18 m/s
Cruise Velocity 0.12 m/s

Type C: Sensor UAV Nominal Altitude 1.4 m
Fuel Capacity 4.5 units
Initial Fuel 2 units
Fuel Consumption Rate 0.01 units/sec

of the six tasks. The WUAV, however is not assigned to any search tasks, because

it was intentionally not given that capability. The WUAV is considered a high value

asset. The planner also schedules refuel times based on the agents' fuel states and

the set of tasks that have been assigned.

When an agent locates a target, the operator is prompted to identify the target

and give it a priority level. In Figure B-7, the target in blue is a friendly of high

priority. Unknown and hostile targets are tracked throughout the mission. The

planner schedules revisit locations and times based on the target's speed and priority

level.

Hostile targets are engaged by the agents if the operator enables that capability.

In the Figure B-8, the WUAV is engaging the pink target. Before weapons release

is initialized, the operator must approve the launch based on an image sent from the

WUAV, to confirm that the target is indeed an enemy.
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Figure B-4: Refuel Base Locations and Target Routes

Missions are typically longer than the flight endurance of the UAVs, so refueling

is necessary. A refuel task consists of the agent flying to its base, landing, the ground

crew switching the battery, and the UAV lifting off again. Figure B-9 shows UAV

1 being refueled by the ground crew while UAV 2 and the WUAV are still in the

mission theater.

When a friendly target is declared high priority, a UAV may be assigned a protec-

tion task. During the protection task, the UAV patrols the area around the friendly,

looking for other hostiles which may cause a threat to the friendly target. In Figure

B-10, UAV 2 is patrolling the area around the blue target.

B.2.2 Mission Results

The results for one of the missions flown in RAVEN during the OPS-USERS demon-

stration are presented here. This mission represents the capabilities of the system as

a whole. Table B.2 shows important mission statistics.

Figure B-11 indicates the times each of the targets were tracked during the mission.

All five targets were found including the pop-up target. Figures B-12 and B-13 show
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-9-V

UAV 2

Figure B-5: Takeoff Sequence and Initial Search Task Selection

UAVI /
IUA a --1 -

Figure B-6: Autonomous Task Allocation and Path Planning

the area searched during the mission. Even with refuel constraints, and very limited

speed, the agents covered most of the environment by the end of the mission. The

results of this mission demonstrate the capability of the OPS-USERS system to search

and track in an unknown environment under human supervisory control. All five

targets were found, and both hostiles were engaged.
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Figure B-7: New Target Discovered, Operator Prompted to Make Classification
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Figure B-8: WUAV Engages Hostile Target After Operator Approval

Table B.2: Performance Results from OPS-USERS Demonstration Mission
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Performance
Ground Searched 98.7 %
Total Area Searched 93.9 %
Targets Found 5/5
Averaged Time Targets Tracked 30.1 %
Average Response 20.7 sec
Hostiles Engaged 2/2



Figure B-9: UAV Refueling During OPS-USERS Mission

Figure B-10: Convoy Protection Task Execution
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Figure B-12: Fraction of Ground Searched as Function of Time
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